Deconstructing Exact Results
iIn Supersymmetric Gauge Theories

Masazumi Honda
(KR % 1E %)
gasfraighiwal ;.

FELZMANN INSTITUTE OF SCIEMCE

References:
- M.H., PRL116, 211601(2016) (arXiv: 1603.06207 [hep-th])

« M.H., PRD94, 025039 (2016) (arXiv:1604.08653 [hep-th])
« M.H., arXiv:1710.05010 [hep-th]

- Russo, JHEP 1206 (2012) 038 (arXiv:1203.5061 [hep-th])
= Aniceto-Russo-Schiappa, JHEP 1503 (2015) 172 (arXiv:1410.5834 [hep-th])

31st, Oct. Resurgence in Gauge and String Theory @KITP



|n the Iast decade’ [thanksto localization method 07 Pestun |

JMany exact results in SUSY QFT



|n the |ast decade’ [thanksto localization method 07 Pestun |

JMany exact results in SUSY QFT

Typically, for supersymmetric quantities,

(path integral) > /d'G‘m £(z)

(|G|: rank of gauge group G)



|n the |ast decade’ [thanksto localization method 07 Pestun |

JMany exact results in SUSY QFT

Typically, for supersymmetric quantities,

(path integral) > /d'G‘m f(z)

(|G|: rank of gauge group G)

In this talk, | will discuss

these exact results are useful for understanding
properties of perturbative series in QFT



Perturbative series of exact results in QFT

This talk:

1. Reinterpret exact results in terms of Borel resum.

2. Study analytic property of Borel trans. in detail

3. Get some lessons for more nontrivial cases



Setup

[cf.some low rank cases: Russo, Aniceto-Russo-Schiappa,
Gerchkovitz-Gomis-Ishtiaque-Karashik-Komargodski-Pufu ]

* 4d N=2 (& 5d N=1) SUSY theories on spheres

expansion by gy, around instanton backgrounds

* 3d N=2 Chern-Simons theories on S3 (& lens sp.)

expansion by inverse CS levels



Summary of main results

(~10 minutes)



Results on 4d N=2 SUSY theories wsssusy)
inst,  [M.H."16]
Set up: t

*Theories w/ <0 and Lagrangians
(Zs-’-l < DCJ)

" Perturbative expansion by gy
around fixed # of instanton/anti-inst.

anti-inst.



Results on 4d N=2 SUSY theories wsssusy)
inst,  [M.H."16]
Set up: t

*Theories w/ <0 and Lagrangians
(Zs-’-l < DCJ)

" Perturbative expansion by gy
around fixed # of instanton/anti-inst.

Result. (similar for 5d N=1 case)

[cf. some SU(2) theories: Russo, Aniceto-Russo-Schiappa]

anti-inst.
* Find explicit finite dimensional integral rep. of Borel trans.
for various observables

- 3Singularities only along R- - Borel summable along R+

- (Exact) = >_  (Borel resum)

instantons
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Typical case: SU(2) w/ fundamentals

o 50 1 a4 2n
Borel trans. around trivial b.g. : Bz5% (1) < v [] ( fggmfﬂ,
n=1(1+ )

“ [t

X
X
>

\ 4

pr—

- Joo singularities along R-
< *All singularities are NOT instantons & IR/UV renormalons

*No qualitative difference between CFT and non-CFT

S—



Nontrivial consistency w/ a conjecture on QCD

N t
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Nontrivial consistency w/ a conjecture on QCD

Borel plane in typical gauge theory (?) :

N t
7a% 7A% >
_QSin S. ._.28
~ e 5 o e__%ﬂ ~ e inst
IR renormalon Inst.-anti-inst.

Conjecture: (IR renormalon) = (Combination of monopoles)

[Argyres-Unsal’12]

But we don’t have such solution for N’ = 2 (ropitz-Unsal]

> No IR renormalon singularities for N =27
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w/ the same topological numbers [cf. Lipatov '77]
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Confusion?

Usually Borel singularities come from nontrivial saddles
w/ the same topological numbers [cf. Lipatov'77]

Now we have /SdFAFDCk_E

For example, around trivial saddle, we expect

3 Borel singularities from k = k  (namely, at t=2k)

But we do not have such singularities.

Differences from (inst.)-(anti-inst.)in QM:

 SUSY configuration (non-interacting)

- finitely Sepad rated (I’'m looking for more precise understanding)



Results on 3d N=2 SUSY Chern-Simons theories

(w/ 4 SUSY)
Set up: [M.H. "16]
* General Chern-Simons (CS) theories coupled to matters

(Zg3 < 00)

" Perturbative expansion by inverse CS levels



Results on 3d N=2 SUSY Chern-Simons theories

(w/ 4 SUSY)
Set up: [M.H. "16]
* General Chern-Simons (CS) theories coupled to matters

(Zg3 < 00)

" Perturbative expansion by inverse CS levels

0o ¢
Result: Sel(g) = ./0 dt e 9 BI(t)

* Find finite dimensional integral rep. of Borel trans.

* Usually non-Borel summable along R+

* But always Borel summable along (half-)imaginary axis

*(Borel resum. w/ 6==xm/2) = (exact result)



Ex.) SU(2) SQCD w/ hypers and real mass

sinh? (o)
BZSB(t) > aoa—m o+m Nf
o (cosh 5™ cosh 7% ) /TG
Im(t) Im(t)
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Interpretation of Borel singularities (3d)

[M.H. "17]

All the singularities can be explained by

Complexified SUSY Solutions

which are not on original contour of path integral
but formally satisfy SUSY conditions: Q(fields) =0

Proposal:

If there are n, bosonic & n; fermionic solutions
with action S=S_/g, then

1
(t — Se)nB—"F

(Borel trans.) D[]
solutions
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Partition function of SU(N) theory on S* (B=0)

Exact result: [Pestun '07]

00 _IN 2
Zss(9,0) = [ aVa e 120710 2(a) Zinst(9,0; )

[ Z(a) : 1l-loop determinant w/ traceless constraint ]

g < 1 —loop effective g%M at scale R§41

inst.
oo

_htR i e—)0 (KK
Zinst(g,0;0) = 3 e o TR Z(RE) (o)
k,k=0

z%P (g )—/ Na e 5 5=1% 2(a) 25P (a)

inst

We are interested in small-g expansion of this

anti-inst.



Borel trans. hidden in localization formula

2P @) = [T a¥a S T2 200 (@)
—00

inst
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Borel trans. hidden in localization formula

inst

740 = [~ e 2R 2@ 200 (o
—00

Taking polar coordinate a; = Vtz; w/ (%)% =1,

Z(k k‘)( ) _f dt e_éf(k’g)(t)

similar to Borel resummation formula?

inst

[ f(kﬁ)(t) - /qw—l dN 1z nk k)(t z), hk: 'l‘)(?f r) = Z(a)Z(k 5)

at=+/tz! J



Borel trans. hidden in localization formula

inst

740 = [~ e 2R 2@ 200 (o
—00

Taking polar coordinate a; = Vtz; w/ (3")°% =1,

Z(k k‘)( ) _/ dt e—éf(kﬁ)(t)

similar to Borel resummation formula?

inst

[f(‘f-ﬁ)(f) = /qw_ldN_ # KR (1 3), n kB (1, 7) = Z(a) 285D

at=+/tz! ]

We can actually prove

FER @) = B2EP (1)




Analytic property of Borel trans.

zgPw = |

SN—l

dV-1z n(KR) (¢ 7)

For example, in SU(N) w/ fundamentals around trivial b.g.,

H(Fi—51)2 2n
o Tliey (1+ 0720
h(oo)(f z)=294 Z-TJ H(mz 333)2 H 2y Nyn
j 1<J n=1 Hj (1.'.%.5)_)

Singularities only along R. # Borel summable along R,!!

true also for non-zero inst. b.g. & other theories



(Exact result)

Z_ (Borel resummation along R,)
k,k

(up to resummation of instanton expansion )



More general cases
Other N=2 theories:

[M.H.’16]

Similar results hold as long as B=0 & Lagrangians

Other observables:

- SUSY Wilson loop on S§#

 Bremsstrahrung function in SCFT on R* et iolcerchiovit-komargodsii 15
(Energy of quark) = de,t a?
- Extremal correlator in SCFT on R* (. Gerchkovitz-Gomis-Ishtiaque

-Karasik-Komargodski-Pufu ’16]

- Partition function on squashed S*~SUSY Renyi entrory

[cf. Hama-Hosomichi, Nosaka-Terashima Nishioka-Yaakov’13,
Crossley-Dyer-Sonner, Huang-Zhou]



3d N=2 SUSY CS matter theory



Partition function of U(N) CS theory on S3

[Kapustin-Willett-Yaakov, Jafferis,
ExaCt FESU|tZ [ g X 1/’@’ k>O: CS Ievel ] HaF:na—Hosomichi—Lee]
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Partition function of U(N) CS theory on S3

[Kapustin-Willett-Yaakov, Jafferis,
ExaCt FESU|tZ [ g X 1/’@? k>O: CS Ievel ] HaF:'na—Hosomichi—Lee]

o0 iNN 52
Zgs(9) = [ dNo er20=1% 2 (o)

SO  Taking polar coordinate: o; = VitZ;, we can show

Tt e uf(it), if(r) = BZgs(—ir)

Zg3(9) = ‘3/

0

( . N—-1= = ) = Z
N fm) = /S’N—l a z h(r,z), h(r,z) = Z(0) oi=\/TZ J



Partition function of U(N) CS theory on S3

[Kapustin-Willett-Yaakov, Jafferis,
ExaCt reSUIt: [ g X 1/’@? k>O: CS Ievel ] HaF:'na—Hosomichi—Lee]

o0 iNN 52
Zgs(9) = [ dNo er20=1% 2 (o)

SO  Taking polar coordinate: o; = VitZ;, we can show

—100 _t
Zs(g) =i /{; dt e 9 f(it), if (r) = BZga(—ir)
f(r) = /SN_IdN—lﬁ h(r,2), h(r,@) = Z(o)| i_ - ]
Namely, o t
Zga(9)= [ dt e IBZg(®)

(exact result) = (Borel resum. along 6=-1/2)



Ex.) U(N) w/ (anti-)fundamentals & adjoints

—ico  _t 1. = —_
Zsqcp(9) =/D dt e 9BZsqcp(t), BZsqcp(t) = /Sw—l dN"1z Z (a = \/Em)
5 N Sff (Jj +i(1 - "E‘I)) [li<j4sinh? (z(o; — o})) X rn—iz\"
J(J} = H Nf . l‘[ eV ( . — (1 - A ))’ 31(2) — H ( . )
i=1 s, (crj —i(1 — .&f)) i,j%1 \9i— 05 —1 a n-+iz

n=1



Ex.) U(N) w/ (anti-)fundamentals & adjoints

ot
Zsqcpl(9) =f0 dt e 9BZsqcp(t).

BZsqcp(t) = /

N N (J;;"H(l‘af)) [li<j4sinh? (7(o; — 7))

Z(@)=]]

exact

A\ 4

v

(gj- — 1(1 — ‘&f)) l_['i,j 5{"7.54 (Ui —0j = 1(1 — ﬁa))!

[t

N-1

dV-1z Z(a = \/ﬁi)

0

)= 1 (G55)

n=1

g

'
,/

singular for Naz0

’
,/

always fine!



Ex.) U(N) w/ (anti-)fundamentals & adjoints

—100 _t 1= = e -
Zsqco(9) = /D dt e 9BZsqcp(t), BZsqcp(t) = /9‘,\.._1 a1z Z (cr = \/Em)
N s‘"?f(a.-ﬂ{l—a ))  Tlic;4sinh2 (x(c; — o; o0 —iz\"
20 = 1] 1’ (o ¥ [li<j4sinh< (7(a; — 0;)) 61(2) = H (n 1z)
j=1 sff (crj —i(1 - &f)) I1i; 5‘:?” (Ui —o;—i(1 - ﬁa)) 1 o ne1 \N+iz
A | t A |O'j
/,;7
) /A
~" | always fine!
exact . ’
\ singular for Na#0

When we have adjoint matters, would be non-Borel summable along R+

*But always Borel summable along 6=-1t/2



More general cases

[M.H. ’16]

Other theories:

Similar results hold as long as Zg3 < o0

Other guantities:
- SUSY Wilson loop on S3

 Bremsstrahrung function in SCFT on R3  (cf tewkowycz Maldacena’13)

- 2-pt. function of U(1) flavor current in SCFT
- 2-pt. function of stress tensor in SCFT

- Partition function on squashed S3~SUSY Renyi entropy

* Partition function on squashed lens space



Interpretation of singularities (3d)

= Complexified Supersymmetric Solutions

[M.H."17]



b=1/0/¢

For a technical convenience,
we consider 3d N=2 theories on ellipsoid

(Round sphere corresponds to b=1)



Bosonic Complexified SUSY Solutions

Under the Coulomb branch solution (constant o),

we look for solutionsw/ v =9y =F =F =0

iA
f(9)

Nontrivial condition for scalar: 0 = Q¢ = —y"eD,¢ — eopp — €



Bosonic Complexified SUSY Solutions

Under the Coulomb branch solution (constant o),
we look for solutionsw/ v =9y =F =F =0

1A

Nontrivial condition for scalar: 0 = Q¢ = —y"eD,¢ — eopp — f(ﬂ)eqb
UserI Eigenvalue Dr0b|em [already solved in Hama-Hosomichi-Lee]
T DD + cod + L e = M
: f(9)

? : 1 b—l‘b_]‘
M=Mpnn=0c+i|mb+nb*+ 5 Al, m,n € Lsp

—



Bosonic Complexified SUSY Solutions

Under the Coulomb branch solution (constant o),
we look for solutionsw/ v =9y =F =F =0

1A

Nontrivial condition for scalar: 0 = Qv = —4"eDy¢ — eop — f(ﬂ)eqb
UserI Eigenvalue Dr0b|em [already solved in Hama-Hosomichi-Lee]
§ YHeD, P + ecd + 1A ed = Med
g f ()

| 1 b+b7t
M = Mmp=o0+i{mbt+nb™" +———A], m,n € £>q

—

SUSY condition is M=0 but this cannot be realized for 0 € R

(=original path)
If we relax this, we have

b+ b1
2

o= —i (mb—l—nb_l +

&) , @ = cDm,n




Fermionic Complexified SUSY Solutions

We look for solutionsw/ ¢ =¢=F =F =0

Nontrivial condition for fermion: e(—+*D, + o)y + i(i?(g)l)w = 0.




Fermionic Complexified SUSY Solutions

We look for solutionsw/ ¢ =¢=F =F =0

.. . . (2A — 1
Nontrivial condition for fermion: e(—+*D, + o)y + i€ Y0 )ew = 0.
USEfUI Eigenvalue prOblem: [already solved in Hama-Hosomichi-Lee]

B ,-, i(2A —1)
(=" Dy 4+ oW) + eV = MeW

2f(9)

-1 N
M= Mnn=oc—i (mb -+ nb~1 — (b+b77)(A 2)) .

,n e’
> m,n € 4>q

—

SUSY condition is M=0 but this cannot be realized for 0 € R

If we relax this,

(b+bH)(A -2)
B 2

Jzi(mb-l—nb—l )J«,bzwm,n




Comparison w/ Borel trans.

For U(1) theory w/ charge q, chiral multiplets,
1

BZSS’(t) =




Comparison w/ Borel trans.

For U(1) theory w/ charge q, chiral multiplets,
1

2V 1oL 1 sp (qa/it — 1Q0500))

BZSS(t) =

Locations of poles & zeroes:

2

i 1, b+bt

t;n{;?e — _q_'z (mb + nb 1 + > &a) )
4

D (Aa - 2))2

T
gmn — mb+nb_1
Zero qg >



Comparison w/ Borel trans.

For U(1) theory w/ charge q, chiral multiplets,
1

BZSS’(t) =

Locations of poles & zeroes:

) 2
i 4 b+b1
{l

t -
Zero g >

) -1 B 2
m,n 2 (mb+nb_1 _ (b+b )(&a 2))

Actions of the solutions:

2 m,mn
itk 3 b+ b1 too
Sbos = —5 | mb + nb L+ &a) — _Pole
a 2 g

Tk
Ster = (mb +nbt -

i

(b+ b1 (Aa - 2) tzero
2 g



Remarks

 Degeneration of poles & zeroes in round sphere limit:
00 00 . nb—1 b+b—1 i o0 I n
s = I I T2 ) ()= ()

=1 .
m=0n=0mb + nb—1 + % + iz n=1 Tl + 12

actions of solutions become degenerate



Remarks

 Degeneration of poles & zeroes in round sphere limit:

SRR Y S ST & 0 o AN
wo= 1 15T T W we =11 ()

1
m=0n=0 mb + nb_l + % + iz n=1

actions of solutions become degenerate

 Contribution from hyper multiplet:

1 B 1
s1(z—1/2)s1 (—z—1/2) 2cosh (7z)

I multiple bosonic & fermionic sols. w/ the same actions



Remarks

 Degeneration of poles & zeroes in round sphere limit:

SRR Y S ST & 0 o AN
wo= 1 15T T W we =11 ()

1
m=0n=0mb + ﬂb_l -+ % + iz n=1

actions of solutions become degenerate

 Contribution from hyper multiplet:
1 1
s1(z—1/2)s1 (—z—1/2) 2cosh (7z)

I multiple bosonic & fermionic sols. w/ the same actions

*In the planar limit: N->e, gN=fixed,
(actions)—>ee # Borel singularities oo

consistent w/ expected convergence in the planar limit



Summary & Outlook



Summary

Deconstructing exact results in SUSY gauge theories

4d N=2 theories:

- 3Singularities only along R- - Borel summable along R+

* (Exact) = >_.  (Borel resum)
instantons

3d N=2 CS matter theories:

 Usually non-Borel summable along R+

* Always Borel summable along (half-)imaginary axis
* (Exact result) =(Borel resummation along the direction)

* (Poles/zeroes) = (Complexified SUSY solutions)



List of interesting points for SUSY guys

*Parameter t in Borel trans.
= radial direction of Coulomb branch parameter

*Borel trans. ~ Integrand of localization

* Borel singularities
= poles of 1-loop det.& Nekrasov partition function

 Real mass affects Borel summability?

* Complexified SUSY solutions determine
analytic structure of “effective potential”?



Open questions
" Less SUSY case?

u Ot h e r O b Se rva b I eS ? [For ‘t Hooft loop, M.H.-D.Yokoyama, in preparation]

Implication of Borel zeroes??

 Expansion by other parameters? (such as 1/N)

4d N=2 theories:

* Physical interpretation of poles in complex plane?

— Probably similar but we have to interpret poles of Nekrasov partition function

3d N=2 CS matter theories:

[Fujimori-M.H.-Kamata-Misumi-Nitta-Sakai, work in progress]

Understanding the resurgence structure

—— Connection to resurgence in complex CS?  [cf. Gukov-Marino-Putrov] Tha n kS I




Appendix



Some details on S?* partition function

el
ZS4 =/_md a ZxydMZcl411oopZinst

Zvam(@) = I (@ a)®  z4(a) = exp [_iitr(a(p))zl

a€eroot o p=1 gp

Haeroot_,_ HQ(CE ' ﬂ)
leoop(ﬂr) — N;
Hm=l HﬁmERm H(pm - lfl)

H(xz) = e_(l""}’)mz(}'(l +iz)G(1 — ix)

(a)

() _ [® N | o iy 2llicg H2(ai — ag) (k)



Outline of Proof

oo (k)

(kk) — g £(k.k) (kk) () — € f4+0—1
A I e

(1) Show f** (+) purely consists of convergent power series:

f(ﬁ»‘ﬁ)(t) — § figkﬁ)tﬂJrf—l

=0
_ (k,F)
2) Laplace trans. guarantees (k) _— % ~
(2) Lap © i r(t+0)
Proof of (1): FER @) = / o dVE R )

(a) Show rF) (¢, z) consists of convergent power series of t

(b) Small-t expansion of r(F) (¢, ) commutes w/ the integral

(This is true if small-t expansion of »%**(.z) uniform convergent)



Non-zero instanton sector

283820 )—/ at o fER @y, fRR) (1) —de 1z (R (¢ 2)

nER) (¢ 2) = 00 (. £) 7255 (4 = Vi7)

mst

/

Rational function of a, whose poles are not in real axis

[cf. Nekrasov ’03]

Thus,

Borel trans. is not singular for teR,

mm) Borel summable!!



General theory w/ Lagrangians (&B=0)

Suppose a theory w/ gauge group: G = G1 X --- X Gy,

254(939) — /m d|G|a ZC|(Q; G)Z(H‘)Ziﬂst(gwg; {I,)

— 00O

Zci(g;a) = exp ! i ltr(a(p))Zl

p=19p

Taking polar coordinate a§P) = \/%ﬁ?)?

T 00 _ p -
2§y = [Faree prfgk}ﬂ{k})(tl,*‘-,tn>
\

Borel trans.

=) Borel summable!!



General 3d N=2 CS matter theory
Suppose a theory w/ gauge group: G = G1 X --- X Gy,

Zga(9) = [ de Za(g:0)2(0)

— 00

mn :

Zc|(g;a) = exp LZ v Sgn(kp)tr(u.(p))Q

Taking polar coordinate cri(p) = \/'?pﬁgp)}

[ 7 f—z‘sgn(kp)oo _tp]
O

Zg3(g) = d"t ¢ | BZga(t)

| p=1

sgn(kp)m

== Borel summable along ¢, = —=—




