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In plethora of quantum devices, mid-circuit measurement is becoming available on cloud

quantum computers.
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Motivation

Entanglement + measurement

Quantum Information

Non-unitarity

. Quantum

Topologic communication
Open quantum
systems Gauge theory Algorithms

Today's lecture aims to explain some physics and their applications woven by measurements and
quantum entanglement. I will approach this topic from the perspectives of measurement-based

quantum computation and lattice gauge theory:.
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Gate-based quantum circuit

Measurement pattern on the 2d cluster state
(translationally invariant graph state).

Graph state C Stabilizer state
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Stabilizer formalism

= Pauli operators:

x=(05)z=(5 %) r=(" %)

XYy =Y, Z} = £, X} =0
X:=Y*=7?=]=—iXYZ

m Operation on Z eigenbasis

Z|10)=10), Z|1)=—-|1) (phase-flip)

X|0)=1]1), X|I1)=10) (bit-flip)

Y|0)=1i|l), Y|1l)=-1i|0) (bit-flip, phase-flip, and a phase)

m X eigenbasis

1 1
— 0O+ (1)), =)= 0) — 1)) .
|+ ) \/5(\>+\>) \8> \/E(H 1))




Stabilizer formalism

mQubit
ly) =al0) +b]1)
s Two-qubit state

lw) =a|00)+b|01)+c|10)+d]|11)

® n-qubit Pauli operators
(L xi} xP,QP,Q ---P, € P,
P, e {,X,Y,Z}.
P, : n-qubit Pauli group
m Example:
-XQZLQZL

We will also use a short hand notation such as —X,2,Z, .
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Stabilizer formalism

m Clifford operators
Operators U that map a Pauli operator to another Pauli

operator under conjugation.
UP,U'=P, (P,P,eP).

m Hadamard operator H

1

H = (1 1). H/H=X, HXH="7.

V2 \1 -1
H|0O)=|+), H|l)=]|-).

m Phase operator S

S:<1 Q). SXST =Y.
0 1
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Stabilizer formalism

m Controlled-NOT gate CX
CX.;,=10)0] &L+ ]1) (1] ®X,
¢ : controlling qubit

1 : target qubit

m Controlled-Z gate CZ
CZ, =10 0] L+ ]|1)(1].®Z
It is a phase gate.
|00) - |00) |O01) - |0O1) |10) - |10) |I1)—> —|11)
Therefore, the roll of ¢ and ¢ is symmetric:
CZip=Clyq

11



Stabilizer formalism

m Some algebra and mnemonic

CZUIRZL)CL=1QRZ

A phase gate commutes with another phase gate.

CZURX)CL=ZQ X
X ‘triggers’ the operator Z in the target qubit.

There’s also a set of algebra for the CNOT gate, but I'm not going to

use it today.
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Stabilizer formalism

m Stabilizer group
& =1{S;} with§; € & and [S;, S,] = 0 for all elements.

m Generators of a stabilizer group

The maximal set of independent stabilizers.
(Sk)
m Examples:

(X, ZIY = {I1,1X, ZI, ZX )
(XX,ZZ) = {II,XX,ZZ, — YY)
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Stabilizer formalism

m Stabilizer state

S;|¥)=|¥) forall§; €.

m [t is a simultaneous eigenstate of commuting operators.

m Examples:

1
(XX,ZZ) — Bell state \/_ (100) + | 11))
2

1
(XXX, ZZI,17ZZ) —> GHZ state \/_(\000) +|111))
2

Graph states, which we’ll define later, are also examples.
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Stabilizer formalism

m A (Clifford unitary or a Pauli measurement converts a stabilizer

state to another stabilizer state.

m [ et us start with Clifford unitaries.

Given a stabilizer state S;| V') = | V'), a new stabilizer for the state U| )
is US;U" .
T — _
USU(U|Y)) = US;|¥)=U|[Y).

Since S] e P and U is Clifford, the new stabilizer is also Pauli,
UsU" € P
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Measurement in stabilizer states

m Now let’s look at measurement of a Pauli operator P € & on stabilizer
states.

m If P € &, then the measurement outcome is P = + 1. The stabilizer doesn’t
change.

m If P & &, then we reconstruct stabilizers. First, we re-group generators as

CS>=< SI’SZ"'°’Sk ’Sk+1’°"’Sn>'

—~ ~

anti-commute with P commute with P

The measurement result of P (£ 1) is random. (Probability — each).

2

The new stabilizer is then

CS),= <iP, 5152,...,Slsk, Sk+1""’Sn>

commute with P

16



Measurement in stabilizer states

m Example 1.

1
(XXX, ZZI,17Z) —> GHZ state \/_(\000) +|111))
2

Measure the middle qubit in the X basis. Assume that the outcome is
X, =+ 1.
(+X5, X, X, X5, (1, 2,2:)(Z,2,1))
~ (+X,, + X, X;5,2,Z5)
—> Bell @ | + )
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Measurement in stabilizer states

m Example 2.
(ZXZ,XZI,1ZX) — 3-qubit cluster state (described later)

Measure the middle qubit in the X basis. Assume that the outcome is
X, =+ 1.
(+X5, 2, X572, (1,2, X5)(X,2,15))
~ (+X,, + 2,725, X, X5)
—> Bell @ | + )
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Measurement in stabilizer states

m Example 3.
(ZXZ,XZI,1ZX) — 3-qubit graph state (described later)

Measure the qubit-2 in the Z basis. Assume that the outcome is Z, = + 1.

(+2,,1)2,X3, X, 2,13)
— |[+)®0)&® | +)
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Universal quantum computation

m Gottesman-Knill theorem

Stabilizer circuits

Inputs : Pauli product basis
Circuit: Clitford gates or Pauli measurements

Stabilizer circuits can be efficiently simulated by classical computers.

m Potentially classically hard circuit:

One can decompose an arbitrary n-qubit gate to a product of universal gates.

(It could be an exponential number of gates; efficiency not guaranteed.)

m {(single qubit) SU(2) gate} U {CNOT} is a universal gate set.
= cf. Solovay-Kitaev theorem: SU(2) can be efficiently approximated by { H, e

to arbitrary accuracy.

20
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Universal quantum computation

Measurement on the 2d cluster state
(translationally invariant graph state).

Graph state C Stabilizer state

21
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Graph state

There is a class of states generated by these ingredients, which are called
graph states. [Hein et al. quant-ph/0602096]

e Graph={V, E}

e V:vertices < qubits | + )®" are placed

o E:edges & CZ,,is applied on (ab) € E (a,b € V)

e Graph state C Stabilizer state

beV
(ab) € E
aeV

® Translationally invariant graph states are called cluster states.
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Graph state

m [n terms of state vectors,

‘W%) — H CZv,v" + >®V
(WHeE

m [n terms of stabilizers,

+)® —  {X

v

VEV}

lyg) {Kv VEV}

&= (T1 ) x- (11 ca)

where (WHeE (WheE



Graph state
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Graph state

® / measurement B Y measurement
1 y) 3 1 y) 3

Stabilizers of the graph state: Stabilizers of the graph state:

K1=HZ]--X1Z2, K,=72X,25, K3:ZZX3-HZJ- K1=HZ]"X122» Ky=2,%725, K3=22X3‘HZ]'

jeL +1 +1  JeR JeE JER
After the measurement: Recombine:
+1 +1
K1=HZJ--X1(il), K3=(il)X3-HZj K1K2=HZ]'Y1Y223» KKy =2, 1, Y3 HZ]
jeL JER JEL jER
S S
o PSS
1 3 ) ;
SX=Y
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Graph state

General rules: See e.g. [Hein et al. quant-ph/0602096]

|
P . 1G)=—|z.£)" QU .|G—V)
V2

1 No2
FL16) = =10 ® Uil 2(6) -

1 < @ |
PLLIG) = —— |2 £ )" ® U, |1 (1 0 74,(G) — ) 2 V \

2
7,(G) : local complementation of a in G. 2-\>4 </4 / 04 2-/>-4

b, : any choice from Nb(a) 3- :
Uy, .+ - outcome dependent ops. {Z, S, H} No. 10 No. 11

/ / ® Apply LC-Rule
We will use X measurement in part II, but we won’t use the rule above. .>. §

27

Local complementation 7,(G)
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Gate teleportation

1-qubit state

O

%
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Gate teleportation
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Gate teleportation

CZ gate

| l//) 1d cluster state
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Gate teleportation

k’
A

Measurement .
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Gate teleportation
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Gate teleportation

bF eedforward
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Gate teleportation
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Gate teleportation

k’
A

\Feedforward

O O O O O O O O

X"Z" - UyU, | w)
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Gate teleportation
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Gate teleportation

O

Post-measurement product state
iy i
XZ 'UN"‘U2U1|W>

Simulated state
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Gate teleportation

O

Uy UyU; | y)

Simulated state
(Post-processing)

Post-measurement product state
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Gate teleportation

) - s=0,1 M= ™| +), e =)} ={Z | +) s =0,1]

[ +) HZ'e™* | y)
This can be shown with simple algebras:

( + ‘le—i§Z1Zi9 X <CZI,2 | W)l | + >2> Inner product

= (+ ‘1 CZI,ze_i5Z1Zf‘l//>l‘ +), (CZ,Z] =0
~ O] e AZ ) |+ )y + (L e TAZ ) Zo | + )y CZ2= 1000 @L+11)(1],®7
= ‘+>2<O‘1€_igzlzf‘l//>1 - | >2<1‘1€_iézlzf‘l//>1 Zl+)=1|-)

= |+ )(+ ‘1H1€_ilezf‘l//>1 + | = )( — ‘1H1€_igzlzf‘l//>1 Hl+)=|0Yand H| =) = |1)
= Hye 73 |y),

40



%

[ +)
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Gate teleportation

s; = 0,1
s, = 0,1
s; = 0,1
s, = 0,1

The outcome state is applied by a cascade of unitary gates:

(HZ%e™"*)(HZ%e ™" )(HZ%e ™" )(HZ ¢ ~'*) | y)

Using HZH = X and XZ = — ZX, we get
(Xs4e—i§4X)(ZS3e—i§3Z)(XS26—i&zX)(Zsle—ile) ‘ l//>

— XS4+SQZS3+516—i§4(—1)S1+S3Xe—i53(—1)S2Ze—iéz(—l)lee—iale | l//> .

If we set &,

=0, &, =D, & =(=1D%p,

g = (=1)"r

41
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2d cluster state on square lattice is universal

From a square-lattice graph state to a brickwork graph state.

SSSSSsssSssss
SSSSSSSSsSsss
SESEE SEESEE B
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2d cluster state on square lattice is universal

CNOT gate by measuring the brickwork graph state.
The state at 5 & 10 (#'5 @ # ) gets the following unitary

Measurement basis: {€'“?| + ), e"*| — )} .

CZ(HZ* @ He'™7%) (He'P*7% @ HZ%)

X CZ(HZ% @ He"*Z%) (HZ*' @ HZ%)
0 p 0
O O O [t is equal to (a good exercise to check):
2 3 4 5
. G " 6 96 0 > CX C7 (XS4 R eiaXXS9) (eiﬁZZS3 ® ZSS)
y 0 @ X CZ(X? @ " X") (2" @ Z*)

— + (XS2+S4ZS1+S3+S9 ® XS7+S9ZS4+S6+SS)
X expli(—1)2pZ @ Ilexpli(— 1) "%aZ @ X]
X expli(—1)yl ® X]

T T
Setting the parameters as @ = (—1)%27%"% x i p=(—1)2x% rk y = (—1)% X L we obtain

—IT
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2d cluster state on square lattice is universal

SU(2) rotation by measuring the brickwork graph state.

Measurement basis: {€'““| + ), e"*| — )} . Similarly, the measurement pattern in the left
figure gives us the Euler rotation.

0 CZ (HZ* ® HZ%) (HZ%¢"* ® HZ%e%)CZ
00— R(a, p,y) X (HZ%e* @ HZ% e’ ) (He'* 75 @ HZ%e'* %)
@

0

10

R(a',p',v) Cleaning up the above expression gives us

R(a,p,y) @ R(a', ', 7')
up to byproduct operators.

Y
O
O
Y
Therefore, the brickwork state is a universal resource of MBQC.

Cf. This state also has an application in “blind quantum computation” [Broadbent et al. quant-ph/0807.4154]
45



2d cluster state on square lattice is universal

Indeed, a graph states on any 2d regular lattice can be converted to the square-lattice graph

IR
: 9’999999999999 : Y measurement
KEROOORERE 0 2o
\ 999 9999 999 99

¥ ¥ Y
/ 7\ / /N
_0/— — \—o— — —o/— —_ \-o— —_ —o/ —_ \-.— — _./_ —
\ / \ / \
/ Ny \

state by measurement.

46 A A A [Van den Nest et al. quant-ph /0604010]



\%1:10]@

What we have just shown is a simple example of MBQC.

MBOQC (measurement-based quantum computation)

(Universal) quantum computation can be achieved by
(1) preparing a resource state
(2) measuring the resource state in a certain adaptive pattern.

(3) post-processing (unwanted) byproduct operators

|[Raussendorf-Briegel (2001)]
Review article: e.g. [T.-C. Wei (2023)]
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MBQC in edge modes of 1d resource state

MPS representation of the 1d graph state (also called the 1d cluster

state) <L‘ A[Cln] A[an—l] A[Clz] A[Cll] ‘R>

HHF-1H P

lwg) = ), (LIAlg,)Ala,_|]--Ala)Ala)]|R) X |a),a,,... )
----- " Virtual space Physical qubits

+)-{o o o=l
| —) (1] —D |R) = | + ) oran arbitrary edge state | ¢)



MBQC in edge modes of 1d resource state

1
Measure the 1st qubit in the X basis: ( 10) + (—1)°] 1))
2

(L| Ala,] Ala,_,] Ala,]

HHT T

Y. (L|Ala,Ala,_]-+Ala,)] (A[O] + <—1>SA[1]) [R) X |s)HP]ay,...))

HZ'|R) = |R,)
+)— 0 -0 < <LI=<O\

= (1] —D |R) = | + ) oran arbitrary edge state | ¢)
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MBQC in edge modes of 1d resource state

1
Measure the 2nd qubit in the X basis: ( 10) + (—1)°] 1))
2

(L| Ala,] Ala,_,]

|R)
O B

2, (LIAlg,Ala, ] (A[O] + (—I)SA[l]) R NN )

HZ'|R,) = | Ry)
oo <LI=<O\

= (1] —D |R) = | + ) oran arbitrary edge state | ¢)
50



MBQC in edge modes of 1d resource state

1 . .
Measure the 1st qubit in the X basis: (619 10) + (=1)%e™| 1))
2

(L| Ala,] Ala,_,] Ala,]

H_H_F-

Z (L|Ala,]Ala,_]---Ala,] (e‘iHA[O] + (— 1)Sei9A[1]) [R)X [s){Flay,...))

,,,,,

HZ'¢""“|R) = |R,)
+)-{o o o=l
| —) (1] —D |R) = | + ) oran arbitrary edge state | ¢)




MBQC in edge modes of 1d resource state

We have unitary gates acting on the virtual space U, € { HZe %}

(L| |R)

w=0o1  Ho-He-b - Ho-Ho-H> o w=19)

(LIU Uy UaU [R) X st a5

In the virtual space, we get quantum gates that generates SU(2) rotations on
an “initial state” |¢),

UnUn—l T U2U1 ‘ R>
Once we measure all the physical qubits, we observe the probability
distribution of projecting the virtual state to | L).
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MBQC in edge modes of 1d resource state

Edge modes seem to play an important role in MBQC. [Gross-Eisert (2006)]

Indeed, resource states for the universal MBQC found so far belong to some SPT
phases, states in which admit degenerate boundary modes.
E.g. AKLT state, cluster states in 1d/2d.

Some works have even proved that the universal MBQC is possible with states in

the entire SPT phase. E.g. 2d cluster phase (protected by rigid line symmetries.)
[Raussendorf-Okay-Wang-Stephen-Nautrup 2018]
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Toric code

m Kitaev’s toric code
m Described by a Hamiltonian

Hrc=- ) A,— ) B,
v P

A,|gs) =B,|gs) =1gs) .
# edges=2|V]|
# plaquettes = | V|

# vertices = | V|

On a torus, stabilizers are not completely independent:

[[8,=1. []a =1

peP veV
The ground state is degenerate, and the degeneracy

depends on the background topology.
— Topological order.
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Long-range entanglement

m Bravyi-Hastings-Verstraete (2006) showed that ground states with a topological
order cannot be prepared by any local time-dependent Hamiltonian evolution from
any product state within a finite time.

m Finite-time (finite depth of quantum circuits) : O(1) with respect to the system size.
m In condensed matter physics, this is used to classify different topological orders of
gapped quantum systems. — Long-range entanglement

Gapped ground states with different topological orders cannot be connected by
finite-depth local unitary transformations.

m The toric code state is a long-range entangled state.
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Short-range entanglement

When a system is not long-range entangled, it is said to be short-range entangled.
Are short-range entangled states uninteresting?

There are states that cannot be obtained by finite-depth local symmetry-preserving
unitary transtormations.

They are called Symmetry-Protected Topological order states.

SPT-ordered states cannot be prepared from a product state by finite-depth
symmetry-preserving local unitary transformations.

Note, however, that if you wish to prepare an SPT ordered state, you can simply
construct a finite-depth local unitary circuit without symmetries.
Cluster states are short-range entangled states.
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Short-range entanglement

m 1d cluster state is an SPT protected by Z,[0] X Z,[0]

X X X X
0

0—0—0—0—0—0—0 O
X X X X X
L= HKZJ B HZ2J'—1X2JZZJ+1 B HX2J
cZ (V4 VA
= K2j+1 = 22]X2j+1Z2]+2 = X2j+1
JEZ JEL JEL

|CZ, HX 1£0, |[CZ, HX | # 0, thus we cannot use CZ as a_symmetry-preserving

even odd

local unitary to bring it down to the trivial product state.
58




Short-range entanglement

m 2d cluster state protected by Z,[0] X Z,[1]
e.g. [ Yoshida (2016)] [HS-Okuda (2022)] [ Verresen-Borla-Vishwanath-Moroz-Thorngren (2022)]

Pl ] = HKe — HXe : Zz[l]
ecy ecy

Note some similarity with the toric code, although they
are in different phases:

/ X
Z-X-7Z =1 X X =1
/ X

Stabilizer I-form symmetry
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Measurement as a shortcut to topological orders

m The toric code cannot be prepared with finite-depth local unitaries from a product
state.

m One obvious loophole is to use non-unitary operations. — Measurement 7

m (luster-state (graph-state) entangler only produces short-range entanglement.
m This is because the CZ gates are mutually commutative. So one can apply the
entangler at once, i.e., the depth is 1.

m First, I'm going to explain: /_\
Feedforwarded
C7 Pauli ops.

Product state ——> cluster state —> ptoit—measurement —_— toric code
state

SRE SRE LRE
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Measurement as a shortcut to topological orders

Feedforwarded

C7 / Pauli ops.

Product state ——> cluster state —> post-measurement —_— toric code

state
________________________________ m Cluster state on the Lieb lattice
. _ . . . . m Qubits are placed on edges and vertices
/AR EEEEEEEEE R EEE PR m Apply CZ's to nearest-neighbor qubits.
: X 4 * edge and vertex in the sense of the lattice, not a graph

z K,=x11z. k=x]]z

D vee eV
¢ o . 5 E m There is a global symmetry in this cluster state.

--------------------------------

[ we) = | [ X 1we) = 1w

61



Measurement as a shortcut to topological orders

CZ

Feedforwarded
Pauli ops.

v

Product state ——> cluster state —> post-measurement —_— toric code

--------------------------------

--------------------------------

O ELCEE S A S A BERRRE
Lz
fanne- - @ N e 1'
o o i i
ST CE L S0 SEEPER-PERE - X
X X
......................... Lo --

state

m Measure vertex qubits in the X basis.

New stabilizers:

+x,, =|]z. |]x

eV eCp
The last one is the product of K, stabilizers around a
plaquette p.
(K, anti-commutes with X, but HXe commutes.)

eCp

[t's not quite the ground state of the toric code...
62



Measurement as a shortcut to topological orders

- v

Product state ——> cluster state —> ptoit-measurement —_— toric code
state

Feedforwarded
Pauli ops.

--------------------------------

m The global symmetry constraints the measurement

‘(il)thZ Z outcomes: x, = *+ 1.
z [Tx1we) = lve).
Lomee- demn-- deenn- T T : y

This means that there are always an even number of —1

R S S eeeabeeeoot outcomes!
(DK 4 i o . .
AR il /b b b rom-se » This implies that the outcome state is the toric code
7 5 5 5 . ground state with string operators that pair up —1

--------------------------------

outcomes. (Next slide)
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Measurement as a shortcut to topological orders

- v

Product state ——> cluster state —> ptoit-measurement —_— toric code
state

Feedforwarded
Pauli ops.

--------------------------------

m [eft figure:

Z

JLXg( ZZ The outcome state can be written as
R i ( IT x)1es
E E E X E e€string
REEEE - sRREhbh Fo-- Pes--- 1: Indeed, at the endpoints of the string, Z stabilizers
Z X are flipped.
r - Z- - = Z ----------------------
: X X : :

Z : : : . The shape of the path doesn’t matter, as the X

--------------------------------

stabilizer can deform strings.
64



Measurement as a shortcut to topological orders

Feedforwarded
C7 Pauli ops. J
Product state ——> cluster state —> ptoit-measurement —_— toric code
state

m One can counter the randomness by applying Pauli
X operators.

(T %)iow = e

ecstrings
m [in.
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Measurement as a shortcut to topological orders

The technique can be generalized for any Z, (and some other discrete groups)
Symmetr 1C state. [ Tantivasadakarn-Thorngren-Vishwanath-Verresen (2021)] [Lu-Lessa-Kim-Hsieh (2022)] etc.

Feedforwarded
- Pauli ops.
CZ /7< ost-measurement B Topological
‘lPsym>V® ‘ + >®E —> SPT — P —_— P &
state order

The operations in total yields measurement-based Kramers-Wannier-Wegner
transformation
KW = (+1"] ]z, +)*
As we'll see, the toric code is an example and a special limit of lattice gauge theories.
H KW = KW Hgno

gauge theory
KW can be seen as a space-like interface between two dual theories.
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Measurement as a shortcut to topological orders

nature

Explore content v  About the journal v  Publish with us v Subscribe

nature > news > article

NEWS | 09 May 2023

Physicists create long-sought
topological quantum states

Exotic particles called nonabelions could fix quantum computers’ error
problem.

Davide Castelvecchi

M. Igbal et al. arXiv:2305.03766 M. Igbal et al. arXiv:2302.01917
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Hamiltonian lattice gauge theories

Let us start with (2+1)d transverse-field Ising model, which is equivalent to the 3d
classical Ising model. I explain the connection between the two. Cf. [J. Kogut (1976)]

— —pl
ZIsing — Z € Al

{s,=%x1}

[|s] = _KZHSV'

e vCe
is the Ising Hamiltonian on the 3d square lattice.

where

We take one direction, say the z direction, as a special direction and make the coupling
constant anisotropic.

Ianis.[S] - KS Z HSV - Kt Z HSV

ecL VE, vCe eeck, vCe

We view the x and y directions as spatial, and z as temporal.
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Hamiltonian lattice gauge theories

A simple rewriting gives us

Ianis.[S] — KS Z HSV - Kt Z HSV

ecL UE, vCe eck, vCe
K al :
~ T Dy S, T+ 7 (Sv(e)Jr o Sv(e)_)
eck UL, vCe eck,

up to a constant. Here,
vie), = x,y,z+ 1jandv(e)_ = {x,y,z} fore = {x,y} X [z,2+ 1].

To derive a 2d quantum Hamiltonian related via
Liing = Tr(e_TH )

we take the spin variable as the basis of the Hilbert space. We also take an
approximation e~ ~ (e AN,
At each temporal slice z = int., we insert a complete basis ® | s,) (S, |
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Hamiltonian lattice gauge theories

We aim to find H such that

ZIsing = TI‘( ® <Sv ‘ e_ATH ® ‘ Sv’> )N '

veV, vevV.,
Relate parameters as
PK, = le Pk At = ek PK. — oo (small Az limit) .

First look at the diagonal transfer matrix elements:

exp( — K Z HSV) — exp( — At Z HZV> for each z slice.

eck UL, vCe eck UL, vCe

Hye=—-2) |12

eckE vCe

So we have
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Hamiltonian lattice gauge theories

We aim to find H such that

ZIsing = TI‘( ® <Sv ‘ e_ATH ® ‘ Sv’>)N '

veV, veV.,
Relate parameters as
PK, = le Pk At = ek PK. — oo (small Az limit) .

Next look at a single-shift transition. Say {s,} and {s, } differ at one site between j and j + 1.

Due to the term —f % Z (Su(e), — v(e)_)2/ the Boltzmann factor gains a weight e =%
eek,
We identity as
({s,} | (=AzH)|{s,}) = e7* = Az,
This is generated by

Hoff—diag - Z Xu ’

uevVv
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Hamiltonian lattice gauge theories

In total, we have for 3d classical Ising model (in a certain limit) that
ZIsing ~ It (e_ATH)N

H = Hrpp = _ZXV_/IZHZV

veV eck vCe
where the vertices and edges are those in 2-dimensions (xy-slices).

with

This construction straightforwardly generalizes to classical Ising models in arbitrary
dimensions and we get (quantum) transverse-field Ising models in one-dimension
lower.

This also generalizes to lattice gauge theories. (Next slide)
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Hamiltonian lattice gauge theories

Consider the G = Z, version of Wilson’s plaquette action:

Mu,=x1}1==7) []u,.

pEP eCp
The action in invariant under the simultaneous flip of spins on edges (links) around a vertex.

We again make the coupling constants anisotropic.

We make use of the gauge transformation to fix spins on temporal edges (temporal link
variables) to 1. Then we get
N{u,=x1}]=-J, Z Hue —J Z Ue( ), Ue(p)_
PEP,, eCp PEP,,
where e(p), and e(p)_ are edges in the plaquette p at larger and smaller ‘temporal’
coordinate, respectively.

Just as in the study with Ising models, we can again use U, U, = — E(Lte(p)+ — ue(p)_)z + 1

74



Hamiltonian lattice gauge theories

We have for d-dim Euclidean path integral of the lattice gauge theory that
ZGauge = Tr(e_ATH)N

H:HGauge= - ZXe_/IZ HZe

eck pPEP eCp
where the edges and plaquettes are those in (d — 1)-dimensions.

with

We already used the gauge redundancy to fix the temporal link variables to 1. However, there
is residual gauge redundancy, which is generated by simultaneous gauge transformations
over temporal coordinates at a fixed vertex in the spatial slice.

In terms of the quantum system, this is generated by the Gauss law divergence operator

G,=|]x.

eV

One can check that [Hg,y., G,] = 0.
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Hamiltonian lattice gauge theories

m Toric code:
HTC — = ZAV_ ZBp
v p
m The Z, lattice gauge theory may be written as

HGauge= _ ZXe_/IZBp
eck peP

with G, = A = 1.
» In condensed matter physics, the toric code (with

some extra terms) is often referred to as a ‘lattice gauge
theory” in this sense.
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Hamiltonian lattice gauge theories

Feedforwarded

C7 Pauli ops.
—_—

Product state ——> cluster state —> post-measurement toric code

state

We ask, is there a generalization of the measurement-based preparation of
the toric code to that of lattice gauge theories?

[t turns out that the method above can indeed implement the Kramers-
Wannier-Wegner duality transformation from the Ising model to the lattice

gauge theory. Feedforwarded

C7 Pauli ops.

pre-measured ., post-measurement Lattice gauge

Ising model
state state theory
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Hamiltonian lattice gauge theories

Feedforwarded

C7 Pauli ops.

Ising model pre—measured ; post-measurement [.attice gauge

state state theory
m Start with a state on vertices |y) T DETT EERPPRRS.
m Introduce ancilla d.o.f. on edges | + )®*
_ Apply the cluster-state entangler %, = H H CZ,, "" """
ecE vCe : ' : : : :
m Measure vertex d.o.f. in the X basis $TTTe [ Lo T R ‘
m As described previously, perform corrections against | +) W)

randomness. This is possible if we have an even
number of | — ) outcomes. (Post-select.)

m All put together, we are implementing an operator
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Hamiltonian lattice gauge theories

KW = (+ [®" %, | + )®F with %, = H H CZ, , implements the following map:

ecE vCe

Xe KW — KW Zv(e)lz (6)2

v

Zew) Lew,LeyLew, KW = KW X,

€ € € €

In the dual lattice piCture, Xe — Xe* and Z (V)lze(v)zze(v)3 6(V)4 — e*(p*)1Ze*(p*)2ze*(p*)gze*(p*M — Bp*

€

KW- - HIsing — HGaugeKW

This is a gauging operation such that
KW - | | X, =KW (global symmetry in %, gets trivialized)
veV

KW =G« - KW (Gauss law in £ emerges)
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Hamiltonian lattice gauge theories

This may be used for a quantum simulation. Suppose we start with a state that satisfies

HXV ly) = |y) (to ensure that the number of the | — ) outcome is even).
veV

A real-time evolution

e_itHIsing ‘ l//)
can be transformed by the measurement-based gauging
procedure as

KWe_itHIsing ‘ l//) — e_itHGaugeKW | l//) .

When the state |y) is in the paramagnetic phase ( ~ | + Y®"), e

then the gauged state KW | y) is in the deconfining phase (=~
toric code).

| Wgauged> T*(t)
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Hamiltonian lattice gauge theories

m By a Lieb-Robinson bound [Bravyi-Hastings-Verstracte], it is expected that a state in the toric code
phase cannot be obtained by a constant-depth unitary circuit. Measurement supplies non-

unitarity to give a short-cut to a quantum simulation in the deconfining regime. [Ashkenazi-Zohar
(2021), HS-Wei (2023)]

m The idea of performing KW on the Ising quantum simulation could be implemented on real
quantum devices in the near future, as the Ising quantum simulation requires less
connectivity.

m In (3+1)dimensions, the lattice Z, gauge theory is self-dual. Gauging may not be so useful as
a short cut for simulating such models.

m Below, we consider a quantum simulation scheme motivated by MBQC.
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A formula

e Consider a general “initial state” |y),,.

e Prepare a “resource state” CZ, ,CZ, .|y),,
e Measure the with {e%X]0), e%X| 1)}, ie., X*e“*|0) (s =0,1)

) CZa,bCZa,c ‘ w>bc :e_lebZC(ZbZC)S ‘ W>bc

— Multi-qubit rotation.
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m Simulating (1+1)d transverse-field Ising model on the 2d cluster state
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m Simulating (1+1)d transverse-field Ising model on the 2d cluster state
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m Simulating (1+1)d transverse-field Ising model on the 2d cluster state
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Cluster state for quantum simulation

m Simulating (1+1)d transverse-field Ising model on the 2d cluster state
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Cluster state for quantum simulation

m Simulating (1+1)d transverse-field Ising model on the 2d cluster state
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— %CZ(@bp - UTFI(At) | ¢>g:;gel:) X | T >others)
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Wegner’s generalized Ising models



Cell simplex o;

o; : cell simplices in d dimensional hypercube lattice

o; : cell simplices in d — 1 dimensional hypercube lattice

o/

6;=0;X{j} oro,,,=o0;X|j,j+ 1]

Point Interval Xy coordinate
(d — 1)-dim
® O ® Oy O
W
¥ 69 = 0y X {J} -} .
[],].+1] Y I&lzdox[j,j+1] .52—01><[],]+1]
U+l

d-dim
Ad %



Similarly, we have cell simplices in the dual lattice with o; ~ 67 ..

We have 0* = 0 (and (0*)* = 0) and a chain complex.

d

dual
<>
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Wegner’s generalized Ising model

MOdel M(d,n)

Classical spin variables S; € {+1, — 1} living on (n — 1)-cells in the d

-dimensional hybercubic lattice. [wegner (1971)]

Euclidean action (classical Hamiltonian) 1 :

1=—J;( ] Sgn_l).

6,_1C00,

Via the transfer matrix formalism, we obtain a quantum Hamiltonian in (d — 1)
dimensions with the continuous time.

Hym=— ) X(o,.))—A) Z(dc,).
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Wegner’s generalized Ising model

Classical Ising model Transverse field Ising model
My I =— JZ 5(06,) Higpy = — Z X(0p) — 4 Z /(0o )
edge ® ® 0 o1

site variable

Gauge theory (Wilson’s Ouantum pur .
plaquette action for G = Z,) uantum pure gauge theory
M
(d.2) I=-J ) S(05,) Hay=— Y X(o) =12 Z(do)
0] 0y

plaquette
link variable —
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Wegner’s generalized Ising model

We wish to simulate a Trotterized (real) time evolution:

ly(1)) = U(t) |w(0))

. . J
T(t =jAt) — (HelAtX(Jn_l)HelAt/IZ(dan)) ‘

0,1

with
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MBQS of lattice gauge theories



| W(O) > bdry

[
‘ WC>bulk ‘ W( )> bdry

‘ l//C>bulk ‘ l//(T»bdry

| (1)) pary : simulated state of M, with the Trotterized time evolution 71(?),
[ w(®))pary = T(0) |y(0)) .

| W)k : Tesource state to be measured — generalized cluster state (gCS).
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MBOS

Entanglement in our resource state, , 18

tailored to reflect the space-time structure of the model M, ,,:

\SCS(d,nQ = Uy + )] + )5

orennees e,
(d,n) =(3,1) O d,n) =(G,2)  ————"
|[Raussendorf Bravyi GELLLEEY ¢
o Harrington (2007)]

] O O ) . T i
0-cell o 1-cell &, ' ¢
1-cell &, Q 9 2-cell &, A >

9, o L
b
O O
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MBQS: simulating M(3’1) on gCS(g,l)

A

{O} O ¢ 0
[0,1]1] ¢ 0

|

xX;-direction

<Load a 2d initial state |y(0)),,, atx; = 0.

Couple it to the rest of the resource state.

="“time” in the simulated world

98



MBQS: simulating M(3’1) on gCS(g,l)

: . : . _ i1
6, =07 X {J} 6y = 0y X {J} 61 = 0y X |],] |

H e—iéX(Uo)
H g~ e12(901) teleported to [, + 1] .

teleported to {j + 1}
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MBQS: simulating M(3’2) on gCS(g,z)

<—Load a 2d initial state |y/(0)), 4, of the gauge
theory

-------------------
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MBQS: simulating M(3’2) on gCS(g,z)

G =0y X[j.j+ 11| 6,=0, %X [j,j+1]

—1&,X(o0y)
Gauss law check. I I e =
(Come back to this later) o,

101 teleported to {j + 1}




MBQS: simulating M, ,, on gCS

A state in M4 Single-qubit measurements

o, o n
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MBQS: simulating M ;,, on gCS

Ex. M5 5, gauge theory
e We consider a faulty resource state | oCSE) = Z(e)X(e))Z(e,)X(e,) | gCS)

® Perfect (non-faulty) measurement
The 2d simulated state at x; = j (¢t = jot) looks like:

J
| w(1)) = Z<eff>>X<e'§f>>(H z<’<>) US(0) | w(0))
k

with U%(¢) being Trotter evolution unitary with parameters & | 4 being faulty.

[Z(el(j ), G(oy)] # 0  The error chain Z(el(j )) is caused by Z(é,).
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MBQS: simulating M ;,, on gCS

e A symmetry of gCS: |gCS) = X(d*%6,) | gCS)
e Error chain Z(¢é,) flips the eigenvalue of X(9%5,).
e In MBQS, the measurements at 1-chains are in X-basis.

e —endpoints of Z(¢,) can be detected

- _

Aty
AT
A

- /
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MBQS: simulating M ;,, on gCS

e A symmetry of gCS: |gCS) = X(d*%6,) | gCS)
e Error chain Z(¢é,) flips the eigenvalue of X(9%5,).

e In MBQS, the measurements at 1-chains are in X-basis.

e —endpoints of Z(¢,) can be detected




MBQS: simulating M ;,, on gCS

With correction, the 2d simulated state at x; = j
(t = jotr) looks like:
J
w(0) = Z(z)X(e") ( 11 z<k>> US(1) | y(0))
k

with zl(j) being dzl(j) = 0.
(k)

post-process 2

i

I

-

I

I

N

H

S N NI
;

BN
NSO

| w(T)) = Z(z, HX(e\YUERT) | w(0))

Gauss law is enforced:

G(op) |w(T)) = |w(T))
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Overlap formula



Overlap formula

Our MBQS measurement pattern is related to the overlap formula below:

©C000000O0O0 0—0—0-0-0

c O O O ©O

©C000000O0O0 0—-0-0-0-0

c O O O O

©C0000000O0 0—-0-0-0-0
O O

c O O 0 ©O
©C000000O0O0

© © O O

2d classical Ising ©

partition function 0 (0|e ™ 2GS )
o (+|

Resource state for (1+1)d
transverse-field Ising model

[t is a classical-quantum correspondence [Van den Nest-Dur-Briegel (2008)] relating a 2d quantum state

and a 2d classical statistical model. sece also [Lee-Ji-Bi-Fisher (2022)] [Matsuo-Fujii-Imoto (2014)].
The state (0 | e %% is different from (0| e "%, which we used in MBQS, however.
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Overlap formula

[et us check this formula.

(+1" Q) (0] ¥ | gCS)

eck

(+1"@ 1 ([T cz., )1+ +)*

eck eckE vCe

= (+ 101" (TTTT 20 ) [T e+ )V 1 +)"

eckE vCe eck

= (+ 170" [ [e“" et 4 )V 4 )E

eck

1
AN N ] G RN

eck
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Overlap formula

As Z is a diagonal operator in the computational basis, it reduces to evaluation of the
exponential over all possible =1 configuration on vertices. We get

1
i T e

eck

1 S
= SIE2V D | G

is,=x1} oy e€EE

1 K ] _s
— 2|E|/22|V| Z e eck L 1vCe

{Sv:il }VEV

Thus we have

1
V KXe — .
(+1" Q015 gCS) = — o Z0(K)

eck
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Overlap formula

Rewriting it further,

O 0 O © o ol ole
© 0 0 0 O© o o o o
Z — /V Y0 0 0" ©
(2,1) — X © 0 0 0 O o o
, © 0 0 © ol oo
c O O O ©O © 0 © © ©
2d classical Ising © 06 0 © &—+—0 00
partition function o (0] o~ KX Toric code

= partially “measuring” out gCS; ;,

This is a ‘map’ from a topologically ordered state to a classical partition function.

In condensed matter physics, this type of relation is called a strange correlator.
[Bal et al., Phys. Rewv. Lett. 121, 177203 (2018)]
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Overlap formula

Qubits on E and V XL
P P P
- O000000 - ‘V ‘ ‘ ‘

Project + O
0-0-0-0-0-0-0 ject by ¥ ‘Ij :‘1“2‘ L )
0000000 © © © ©O
0-O0-0-0-0-0—-0 O—F—0+—0-+°0

| gCS) | D)
Qubits on E and P

i Pro]ect “‘ ““ ““
by ( +\ Hadamard - I 2
Xy 7
© © ©0 © © © ©0 ©0

[ gCS*) [ D*) H|D*)




Overlap formula

m The state | @) is stabilized by X, | D) = | D)
m The state | ®*) is stabilized by Z; | ®*) = | ®*)
m X; and Z; anti-commute on a torus.

E}::

The precise relation is:

1
© © o o H[D >=H1(T2,Zz) Z Z| @)

O © ©O [£1€eH (T, Z,)
“I? © Note:
© O 1

o © o 7 X, |F)=|F), Z|0)=]|0). |¢>=\/§(\6>+\T>)
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Overlap formula

We obtained:
1
H | d*) = D). Z|®).
2
HI(T ’ Z2) [Z/ﬂ]EHl(Tz,Zz) 1
There’s an identity (0| e**H = \/sinh(K) (0] eX™* with K* = — 5 log tanh(K).
The identity
(0] e®* | D*) = (0] e**H - H| D*)
implies that

Z,. (K) ~ (sinh K)E/2 Z Z(K*: £)
[£1eH (T?,Z,)
where Z(K*; ) is a twisted partition function of 2d classical partition function and
Z1..1(K) is the Ising partition function on the dual square lattice.
The sign of the coupling constant is flipped along the line 7.
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Aspects of symmetries I:
SPT



Higher-form symmetries in gCS

(d,n) =(3,1)

(d — n) — 2-form Symmetry (n — 1) = (O-form symmetry
X
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Higher-form symmetries in gCS

(d,n) = (3,2)

(d — n) = 1-form symmetry (n — 1) = 1-form symmetry

...................
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Higher-form symmetries in gCS

(d — n)-form and (n — 1)-form symmetry:
2CS) = X(3,)| gCS) = X(#__ )| ¢CS)
withM,_, = {2,102, =0}, M, _, =12, [0%Z; = 0}.

d—n+1
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SPT order in gCS

gCS ;) has an SPT order protected by (d — n)-form and
(n T 1)-fOI‘m Zz

e Two symmetry generators act projectively at the boundaries of the lattice —
SPT. ct. [Yoshida (2016)] [Roberts-Kubica-Yoshida-Bartlett (2017)].

® The simulated state as an edge state of an SPT.

119



Appendix
Aspects of symmetries II:

Holographic correspondence?




Bulk/boundary symmetries in MBQS

A state in M

Bulk symmetry generator X(Z* ) with

d—n+1
a>X<ZZZI<:—n+1

Boundary symmetry generator X(z* )

— — %
=0or =27 .

(3,1) Ising 0-form symmetry X(z) = HXV —>  O-form symmetry X(Z7) = HX\‘?
veV yev
(3,2) gauge Electric 1-form symmetry X(z) — =—— 1-form symmetry X(Z7)
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Bulk/boundary symmetries in MBQS

Consider a d-dimensional Hamiltonian

H=- ) 7(35,)),
which is symmetric under the transformation with the global (n — 1)-form, X(Z;k_nH).
Cluster state gCS:

It is described by the local stabilizer conditions:

X(6,)Z(d0,) | gCS(d,n)> = X(6,,_1)Z(0%6,,_;) | gCS(d,n)> — ‘gcs(d,n)> -

[t can be seen as the ground state of the gauged version of the above Hamiltonian,

Hypgea = — ), X(6,)2(05,),
with the local gauge constraint X(6, )Z(0*6, ) =1 (Vo,_;).

(The global symmetry X(z*  )is a product of local stabilizers X(5,_)Z(0*6,_;).)

d—n+1
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Bulk/boundary symmetries in MBQS

In other words, the boundary global symmetry is promoted to the bulk(+boundary)
global symmetry X(Z7 ) \w) = | W), and it is gauged in the cluster state.

global (n — 1)-form sym.

A state Iin M( d.n)

global (n — 1)-form sym.

X&)

d—n+1

“Holographic interplay”

123



Summary and outlook



Summary/Outlook

m Graph states/ cluster states is a class of stabilizer states that can be used for MBQC.

m The 2d cluster state on a regular lattice is a universal resource.

m Open Question: What is the precise characterization of an MBQC resource state?
“Universal phase of quantum matter”?

m The cluster state entangler and measurements combined together offer a shortcut to
deconfinement phases.

m The preparation of the toric code state was recently achieved with this method. We
expect that more exciting results along this direction will come out in the near future.

m This can be potentially applied to quantum simulations as well.

m Open Question: How about for continuous gauge groups (e.g. U(1)) etc.? ct. [Ashkenazi-Zohar
(2021)]
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Summary/Outlook

m | also explained an Measurement-Based Quantum Simulation scheme. Depending on
properties of experimental devices, there can be some advantage over gate-based
quantum simulations. E.g. run time.

m So far, this has been formulated for Z,, higher-form gauge theories in arbitrary
dimensions, the Fradkin-Shenker model, and Kitaev’s Majorana chain model.

m [t is also possible to implement the imaginary-time evolution with post selections.

m Open Question: Can we formulate an MBQS for U(1) lattice gauge theories and theories

with Dirac/Weyl fermions?
m Open Question: Is the MBQS possible over the family of states within some SPT phase
which includes the state | gCS)? (Similar to the notion of “universal phase of quantum

matter”)
m Thoughts: Relation to the overlap fermion formalism and its anomaly inflow?
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SPT in gCS

[Chen-Gu-Wen]

® A state has a long-range entanglement iff it is not short-range
entangled.

o A state | D) has a short-range entanglement iff there is (finite-depth)
local unitary evolution such that |®) = U|® )

U

LTI e e

Long-range entangled state Product state
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SPT in gCS

[Chen-Gu-Wen]
e A state has a nontrivial SPT order if it is SRE and it is not a trivial SPT.

e A symmetric state | ®) has a trivial SPT order with respect to a

symmetry G iff there is (finite-depth) symmetric local unitary evolution
such that [®@) = U, | @ p04)

U
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