測定型量子計算と格子ゲージ理論

Measurement－based quantum computation and lattice gauge theories

場の理論の新しい計算方法2023
助野裕紀
Hiroki Sukeno，C．N．YITP Stony Brook University

Motivation

In plethora of quantum devices, mid-circuit measurement is becoming available on cloud quantum computers.

Quantinuum
Iqbal et al. arXiv:2302.01917

IBM Quantum
https:/ / www.nature.com/articles/ d41586-021-03476-5

QuEra

Motivation

Entanglement + measurement

Today's lecture aims to explain some physics and their applications woven by measurements and quantum entanglement. I will approach this topic from the perspectives of measurement-based quantum computation and lattice gauge theory.

References for beginners

Review papers／textbooks：

－小柴，藤井，森前『観測に基づく量子計算』コロナ社（2017）
－M．Nielsen and I．L．Chuang，＂Quantum Computation and Quantum Information，＂Cambridge University Press．
－T．－C．Wei，＂Quantum spin models for measurement－based quantum computation，＂Advances in Physics：X，Volume 3 （2018）
－K．Fujii，＂Quantum Computation with Topological Codes－from qubit to topological fault－tolerance－，＂ arXiv：1504．01444

Other recent papers：

－N．Tantivasadakarn，R．Thorngren，A．Vishwanath，and R．Verresen，＂Long－range entanglement from measuring symmetry－protected topological phases，＂arXiv：2112．01519
－H．Sukeno and T．Okuda，＂Measurement－based quantum simulation of Abelian lattice gauge theories，＂SciPost Physics 14129 （2023）

MBQC

Gate-based quantum circuit

Measurement pattern on the 2d cluster state (translationally invariant graph state).

Graph state \subset Stabilizer state

Plan

Part I: Quantum computation by measurement

- Stabilizer formalism
- Graph state
- Gate teleportation
- Universal quantum computation on graph states

Part II: Measurement-based quantum computation and lattice gauge theory

- Measurement as a shortcut to topological orders
- \mathbb{Z}_{2} lattice gauge theory
- Quantum simulation of lattice gauge theories

Plan

Part I: Quantum computation by measurement

- Stabilizer formalism
- Graph state
- Gate teleportation
- Universal quantum computation on graph states

Part II: Measurement-based quantum computation and lattice gauge theory

- Measurement as a shortcut to topological orders
- \mathbb{Z}_{2} lattice gauge theory
- Quantum simulation of lattice gauge theories

Stabilizer formalism

- Pauli operators:

$$
\begin{gathered}
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
\{X, Y\}=\{Y, Z\}=\{Z, X\}=0 \\
X^{2}=Y^{2}=Z^{2}=I=-i X Y Z
\end{gathered}
$$

- Operation on Z eigenbasis
$Z|0\rangle=|0\rangle, \quad Z|1\rangle=-|1\rangle \quad($ phase-flip)
$X|0\rangle=|1\rangle, \quad X|1\rangle=|0\rangle$ (bit-flip)
$Y|0\rangle=i|1\rangle, \quad Y|1\rangle=-i|0\rangle$ (bit-flip, phase-flip, and a phase)
- X eigenbasis

Stabilizer formalism

-Qubit

$$
|\psi\rangle=a|0\rangle+b|1\rangle
$$

-Two-qubit state

$$
|\psi\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle
$$

- n-qubit Pauli operators

$$
\{ \pm 1, \pm i\} \times P_{1} \otimes P_{2} \otimes \cdots P_{n} \in \mathscr{P}_{n}
$$

$P_{j} \in\{I, X, Y, Z\}$.
\mathscr{P}_{n} : n-qubit Pauli group

- Example:

$$
-X \otimes Z \otimes Z
$$

We will also use a short hand notation such as $-X_{1} Z_{2} Z_{3}$.

Stabilizer formalism

- Clifford operators

Operators U that map a Pauli operator to another Pauli operator under conjugation.

$$
U P_{1} U^{\dagger}=P_{2} \quad\left(P_{1}, P_{2} \in \mathscr{P}_{n}\right) .
$$

- Hadamard operator H

$$
\begin{gathered}
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) . \quad H Z H=X, \quad H X H=Z . \\
H|0\rangle=|+\rangle, \quad H|1\rangle=|-\rangle .
\end{gathered}
$$

- Phase operator S

$$
S=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right) . \quad S X S^{\dagger}=Y
$$

Stabilizer formalism

- Controlled-NOT gate $C X$

$$
C X_{c, t}=|0\rangle_{c}\left\langle\left. 0\right|_{c} \otimes I_{t}+\mid 1\right\rangle_{c}\left\langle\left. 1\right|_{c} \otimes X_{t}\right.
$$

c : controlling qubit
t : target qubit

- Controlled-Z gate $C Z$

$$
C Z_{c, t}=|0\rangle_{c}\left\langle\left. 0\right|_{c} \otimes I_{t}+\mid 1\right\rangle_{c}\left\langle\left. 1\right|_{c} \otimes Z_{t}\right.
$$

It is a phase gate.

$$
|00\rangle \rightarrow|00\rangle \quad|01\rangle \rightarrow|01\rangle \quad|10\rangle \rightarrow|10\rangle \quad|11\rangle \rightarrow-|11\rangle
$$

Therefore, the roll of c and t is symmetric:

$$
C Z_{a, b}=C Z_{b, a}
$$

Stabilizer formalism

- Some algebra and mnemonic

$$
C Z(I \otimes Z) C Z=I \otimes Z
$$

A phase gate commutes with another phase gate.

$$
\begin{gathered}
C Z(I \otimes X) C Z=Z \otimes X \\
X \text { 'triggers' the operator } Z \text { in the target qubit. }
\end{gathered}
$$

There's also a set of algebra for the CNOT gate, but I'm not going to use it today.

Stabilizer formalism

- Stabilizer group

$$
\mathcal{S}=\left\{S_{j}\right\} \quad \text { with } S_{j} \in \mathscr{P} \text { and }\left[S_{k}, S_{\ell}\right]=0 \text { for all elements. }
$$

- Generators of a stabilizer group

The maximal set of independent stabilizers.

$$
\left\langle\widetilde{S}_{k}\right\rangle
$$

- Examples:

$$
\begin{gathered}
\langle I X, Z I\rangle=\{I I, I X, Z I, Z X\} \\
\langle X X, Z Z\rangle=\{I I, X X, Z Z,-Y Y\}
\end{gathered}
$$

Stabilizer formalism

- Stabilizer state

$$
S_{j}|\Psi\rangle=|\Psi\rangle \text { for all } S_{j} \in \mathcal{S}
$$

- It is a simultaneous eigenstate of commuting operators.
- Examples:

$$
\begin{aligned}
\langle X X, Z Z\rangle & \longrightarrow \text { Bell state } \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
\langle X X X, Z Z I, I Z Z\rangle & \longrightarrow \text { GHZ state } \frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)
\end{aligned}
$$

Graph states, which we'll define later, are also examples.

Stabilizer formalism

- A Clifford unitary or a Pauli measurement converts a stabilizer state to another stabilizer state.
- Let us start with Clifford unitaries.

Given a stabilizer state $S_{j}|\Psi\rangle=|\Psi\rangle$, a new stabilizer for the state $U|\Psi\rangle$ is $U S_{j} U^{\dagger}$.

$$
U S_{j} U^{\dagger}(U|\Psi\rangle)=U S_{j}|\Psi\rangle=U|\Psi\rangle
$$

Since $S_{j} \in \mathscr{P}$ and U is Clifford, the new stabilizer is also Pauli, $U S_{j} U^{\dagger} \in \mathscr{P}$.

Measurement in stabilizer states

- Now let's look at measurement of a Pauli operator $P \in \mathscr{P}$ on stabilizer states.
- If $P \in \mathcal{S}$, then the measurement outcome is $P=+1$. The stabilizer doesn't change.
- If $P \notin \mathcal{S}$, then we reconstruct stabilizers. First, we re-group generators as

$$
\mathcal{S}=\langle\underbrace{S_{1}, S_{2}, \ldots, S_{k}}_{\text {anti-commute with } P}, \underbrace{S_{k+1}, \ldots, S_{n}}_{\text {commute with } P}\rangle
$$

The measurement result of $P(\pm 1)$ is random. (Probability $\frac{1}{2}$ each).
The new stabilizer is then

$$
\mathcal{S}^{\prime}=\langle \pm P, \underbrace{\left.S_{1} S_{2}, \ldots, S_{1} S_{k}, S_{k+1}, \ldots, S_{n}\right\rangle}_{\text {commute with } P}
$$

Measurement in stabilizer states

- Example 1.

$$
\langle X X X, Z Z I, I Z Z\rangle \longrightarrow G H Z \text { state } \frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)
$$

Measure the middle qubit in the X basis. Assume that the outcome is

$$
X_{2}=+1 .
$$

$$
\begin{gathered}
\left\langle+X_{2}, X_{1} X_{2} X_{3},\left(I_{1} Z_{2} Z_{3}\right)\left(Z_{1} Z_{2} I_{3}\right)\right\rangle \\
\simeq\left\langle+X_{2},+X_{1} X_{3}, Z_{1} Z_{3}\right\rangle \\
\longrightarrow \text { Bell } \otimes|+\rangle
\end{gathered}
$$

Measurement in stabilizer states

- Example 2.
$\langle Z X Z, X Z I, I Z X\rangle \longrightarrow$ 3-qubit cluster state (described later)

Measure the middle qubit in the X basis. Assume that the outcome is $X_{2}=+1$.

$$
\begin{gathered}
\left\langle+X_{2}, Z_{1} X_{2} Z_{3},\left(I_{1} Z_{2} X_{3}\right)\left(X_{1} Z_{2} I_{3}\right)\right\rangle \\
\simeq\left\langle+X_{2},+Z_{1} Z_{3}, X_{1} X_{3}\right\rangle \\
\longrightarrow \text { Bell } \otimes|+\rangle
\end{gathered}
$$

Measurement in stabilizer states

- Example 3.
$\langle Z X Z, X Z I, I Z X\rangle \longrightarrow$ 3-qubit graph state (described later)

Measure the qubit-2 in the Z basis. Assume that the outcome is $Z_{2}=+1$.

$$
\begin{aligned}
& \left\langle+Z_{2}, I_{1} Z_{2} X_{3}, X_{1} Z_{2} I_{3}\right\rangle \\
& \simeq \simeq\left\langle+Z_{2}, X_{3}, X_{1}\right\rangle \\
& \longrightarrow|+\rangle \otimes|0\rangle \otimes|+\rangle
\end{aligned}
$$

Universal quantum computation

- Gottesman-Knill theorem

Stabilizer circuits
Inputs : Pauli product basis
Circuit: Clifford gates or Pauli measurements
Stabilizer circuits can be efficiently simulated by classical computers.

- Potentially classically hard circuit:

One can decompose an arbitrary n-qubit gate to a product of universal gates.
(It could be an exponential number of gates; efficiency not guaranteed.)

- \{ (single qubit) $\operatorname{SU}(2)$ gate $\} \cup\{C N O T\}$ is a universal gate set.
- cf. Solovay-Kitaev theorem: $\operatorname{SU}(2)$ can be efficiently approximated by $\left\{H, e^{i \pi / 8}\right\}$ to arbitrary accuracy.

MBQC

Universal quantum computation

Measurement on the 2d cluster state (translationally invariant graph state).

Graph state \subset Stabilizer state

Plan

Part I: Quantum computation by measurement

- Stabilizer formalism
- Graph state
- Gate teleportation
- Universal quantum computation on graph states

Part II: Measurement-based quantum computation and lattice gauge theory

- Measurement as a shortcut to topological orders
- \mathbb{Z}_{2} lattice gauge theory
- Quantum simulation of lattice gauge theories

Graph state

There is a class of states generated by these ingredients, which are called graph states. [Hein et al. quant-ph/0602096]

- Graph $=\{V, E\}$
- V : vertices \leftrightarrow qubits $|+\rangle^{\otimes V}$ are placed
- E : edges $\leftrightarrow C Z_{a, b}$ is applied on $\langle a b\rangle \in E(a, b \in V)$
- Graph state \subset Stabilizer state
- Translationally invariant graph states are called cluster states.

Graph state

- In terms of state vectors,

$$
\left|\psi_{\mathscr{\varepsilon}}\right\rangle=\prod_{\left\langle v v^{\prime}\right\rangle \in E} C Z_{v, v^{\prime}}|+\rangle^{\otimes V}
$$

- In terms of stabilizers,
where

Graph state

etc.

Graph state

- Z measurement

Stabilizers of the graph state:
$K_{1}=\prod_{j \in L} Z_{j} \cdot X_{1} Z_{2}, \quad K_{2}=Z_{1} X_{2} Z_{3}, \quad K_{3}=Z_{2} X_{3} \cdot \prod_{j \in R} Z_{j}$
After the measurement:

$$
K_{1}=\prod_{j \in L} Z_{j} \cdot X_{1}(\pm 1), \quad K_{3}=(\pm 1) X_{3} \cdot \prod_{j \in R} Z_{j}
$$

- Y measurement

Stabilizers of the graph state:

$$
K_{1}=\prod_{j \in L} Z_{j} \cdot X_{1} Z_{2}, \quad K_{2}=Z_{1} X_{2} Z_{3}, \quad K_{3}=Z_{2} X_{3} \cdot \prod_{j \in R} Z_{j}
$$

Recombine:

$$
K_{1} K_{2}=\prod_{j \in L} Z_{j} Y_{1}^{ \pm 1} Y_{2} Z_{3}, \quad K_{2} K_{3}=Z_{1} Y_{2} Y_{3} \prod_{j \in R} Z_{j}
$$

Graph state

General rules:

See e.g. [Hein et al. quant-ph/0602096]

$$
\begin{aligned}
& P_{z, \pm}^{v}|G\rangle=\frac{1}{\sqrt{2}}|z, \pm\rangle^{v} \otimes U_{z, \pm}^{v}|G-v\rangle \\
& P_{y, \pm}^{v}|G\rangle=\frac{1}{\sqrt{2}}|y, \pm\rangle^{v} \otimes U_{y, \pm}^{v}\left|\tau_{a}(G)-v\right\rangle \\
& P_{x, \pm}^{v}|G\rangle=\frac{1}{\sqrt{2}}|x, \pm\rangle^{v} \otimes U_{x, \pm}^{v}\left|\tau_{b_{0}}\left(\tau_{a} \circ \tau_{b_{0}}(G)-v\right)\right\rangle
\end{aligned}
$$

$\tau_{a}(G)$: local complementation of a in G. b_{0} : any choice from $\mathrm{Nb}(\mathrm{a})$
$U_{x, y, z, \pm}^{a}$: outcome dependent ops. $\{Z, S, H\}$

We will use X measurement in part II, but we won't use the rule above.

Plan

Part I: Quantum computation by measurement

- Stabilizer formalism
- Graph state
- Gate teleportation
- Universal quantum computation on graph states

Part II: Measurement-based quantum computation and lattice gauge theory

- Measurement as a shortcut to topological orders
- \mathbb{Z}_{2} lattice gauge theory
- Quantum simulation of lattice gauge theories

Gate teleportation

1-qubit state
$|\psi\rangle$

Gate teleportation

Gate teleportation

Gate teleportation

$$
\begin{array}{cccccccccc}
\text { Measurement } & \square & & & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Gate teleportation

$$
\begin{aligned}
& 0 \\
& X^{\#} Z^{\#} \cdot U_{1}|\psi\rangle
\end{aligned}
$$

Gate teleportation

Gate teleportation

$X^{\#} Z^{\#} \cdot U_{2} U_{1}|\psi\rangle$

Gate teleportation

Gate teleportation

$$
X^{\#} Z^{\#} \cdot U_{3} U_{2} U_{1}|\psi\rangle
$$

Gate teleportation

Post-measurement product state

$$
X^{\#} Z^{\#} \cdot U_{N} \cdots U_{2} U_{1}|\psi\rangle
$$

Simulated state

Gate teleportation

Post-measurement product state

$$
U_{N} \cdots U_{2} U_{1}|\psi\rangle
$$

Simulated state (Post-processing)

Gate teleportation

This can be shown with simple algebras:

Gate teleportation

The outcome state is applied by a cascade of unitary gates:

$$
\left(H Z^{S_{4}} e^{-i \xi_{4} Z}\right)\left(H Z^{S_{3}} e^{-i \xi_{3} Z}\right)\left(H Z^{s_{2}} e^{-i \xi_{2} Z}\right)\left(H Z^{s_{1}} e^{-i \xi_{1} Z}\right)|\psi\rangle
$$

Using $H Z H=X$ and $X Z=-Z X$, we get

$$
\begin{aligned}
& \left(X^{s_{4}} e^{-i \xi_{4} X}\right)\left(Z^{s_{3}} e^{-i \xi_{3} Z}\right)\left(X^{s_{2}} e^{-i \xi_{2} X}\right)\left(Z^{s_{1}} e^{-i \xi_{1} Z}\right)|\psi\rangle \\
& =X^{s_{4}+s_{2}} Z^{s_{3}+s_{1}} e^{-i \xi_{4}(-1)^{s_{1}+s_{3}} X} e^{-i \xi_{3}(-1)^{s_{2}} Z} e^{-i \xi_{2}(-1)^{s_{1}} X} e^{-i \xi_{1} Z}|\psi\rangle .
\end{aligned}
$$

If we set $\xi_{1}=0, \xi_{2}=(-1)^{s_{1}} \gamma, \xi_{3}=(-1)^{s_{2}} \beta$, $\xi_{4}=(-1)^{s_{1}+s_{3}} \alpha$, the output state becomes

$$
X^{s_{4}+s_{2}} Z^{s_{3}+s_{1}} e^{-i \alpha X} e^{-i \beta Z} e^{-i \gamma X}|\psi\rangle
$$

Plan

Part I: Quantum computation by measurement

- Stabilizer formalism
- Graph state
- Gate teleportation
- Universal quantum computation on graph states

Part II: Measurement-based quantum computation and lattice gauge theory

- Measurement as a shortcut to topological orders
- \mathbb{Z}_{2} lattice gauge theory
- Quantum simulation of lattice gauge theories

2d cluster state on square lattice is universal

From a square-lattice graph state to a brickwork graph state.

- Z measurement
- Y measurement

2d cluster state on square lattice is universal

CNOT gate by measuring the brickwork graph state.
The state at $5 \& 10\left(\mathscr{H}_{5} \otimes \mathscr{H}_{10}\right)$ gets the following unitary

Measurement basis: $\left\{e^{i \xi Z}|+\rangle, e^{i \xi Z}|-\rangle\right\}$.

$$
\begin{aligned}
& C Z\left(H Z^{s_{4}} \otimes H e^{i \alpha Z} Z^{s_{9}}\right)\left(H e^{i \beta Z^{S_{3}}} \otimes H Z^{s_{8}}\right) \\
& \times C Z\left(H Z^{s_{2}} \otimes H e^{i \gamma Z} Z^{s_{7}}\right)\left(H Z^{s_{1}} \otimes H Z^{s_{6}}\right)
\end{aligned}
$$

It is equal to (a good exercise to check):

$$
\begin{aligned}
& C Z\left(X^{s_{4}} \otimes e^{i \alpha X} X^{s_{9}}\right)\left(e^{i \beta Z} Z^{s_{3}} \otimes Z^{s_{8}}\right) \\
& \times C Z\left(X^{s_{2}} \otimes e^{i \gamma X} X^{s_{7}}\right)\left(Z^{s_{1}} \otimes Z^{s_{6}}\right) \\
= & \pm\left(X^{s_{2}+s_{4}} Z^{s_{1}+s_{3}+s_{9}} \otimes X^{s_{7}+s_{9}} Z^{s_{4}+s_{6}+s_{8}}\right) \\
& \times \exp \left[i(-1)^{s_{2}} \beta Z \otimes I\right] \exp \left[i(-1)^{s_{2}+s_{6}+s_{8}} \alpha Z \otimes X\right] \\
& \times \exp \left[i(-1)^{s_{6}} \gamma I \otimes X\right]
\end{aligned}
$$

Setting the parameters as $\alpha=(-1)^{s_{2}+s_{6}+s_{8}} \times \frac{-\pi}{4}, \beta=(-1)^{s_{2}} \times \frac{\pi}{4}, \gamma=(-1)^{s_{6}} \times \frac{\pi}{4}$, we obtain

$$
\exp \left[\frac{-i \pi}{4}\left(I-Z_{5}\right)\left(I-X_{10}\right)\right]=C X_{5,10}
$$

2d cluster state on square lattice is universal

$\mathrm{SU}(2)$ rotation by measuring the brickwork graph state.

Measurement basis: $\left\{e^{i \xi Z}|+\rangle, e^{i \xi Z}|-\rangle\right\}$.

Similarly, the measurement pattern in the left figure gives us the Euler rotation.

$$
\begin{aligned}
& C Z\left(H Z^{s_{4}} \otimes H Z^{s_{9}}\right)\left(H Z^{s_{s}} e^{i i Z} \otimes H Z^{s_{s}} e^{i \gamma^{\prime} Z}\right) C Z \\
& \times\left(H Z^{s_{2}} e^{i \beta Z} \otimes H Z^{\left.s^{s_{i}} e^{i \beta^{\prime}}\right)\left(H e^{i \alpha Z} Z^{s_{1}} \otimes H Z^{s_{s}} e^{i \alpha^{\prime} Z}\right)} .\right.
\end{aligned}
$$

Cleaning up the above expression gives us

$$
R(\alpha, \beta, \gamma) \otimes R\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)
$$

up to byproduct operators.

Therefore, the brickwork state is a universal resource of MBQC.

Cf. This state also has an application in "blind quantum computation" [Broadbent et al. quant-ph/0807.4154]

2d cluster state on square lattice is universal

Indeed, a graph states on any 2d regular lattice can be converted to the square-lattice graph state by measurement.

Y measurement
\diamond Z measurement

[Van den Nest et al. quant-ph / 0604010]

MBQC

What we have just shown is a simple example of MBQC.

MBQC (measurement-based quantum computation)
(Universal) quantum computation can be achieved by
(1) preparing a resource state
(2) measuring the resource state in a certain adaptive pattern.
(3) post-processing (unwanted) byproduct operators

MBQC in edge modes of 1d resource state

MPS representation of the 1d graph state (also called the 1d cluster state)

$$
\left.\left|\psi_{\mathscr{C}}\right\rangle=\sum_{\left\{a_{k}\right\}_{k=1, \ldots n}}\langle L| A\left[a_{n}\right] A\left[a_{n-1}\right] \cdots A\left[a_{2}\right] A\left[a_{1}\right]|R\rangle \times\left|a_{1}, a_{2}, \ldots\right\rangle\right\rangle
$$

A[a]

$$
\langle\langle L|=\langle 0|
$$

$$
-|R\rangle=|+\rangle \text { or an arbitrary edge state }|\phi\rangle
$$

MBQC in edge modes of 1d resource state

Measure the 1st qubit in the X basis: $\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{s}|1\rangle\right)$

MBQC in edge modes of 1d resource state

Measure the end quit in the X basis: $\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{s}|1\rangle\right)$

Aaa]

$$
-|R\rangle=|+\rangle \text { or an arbitrary edge state }|\phi\rangle
$$

MBQC in edge modes of 1d resource state

Measure the 1st quit in the X basis: $\frac{1}{\sqrt{2}}\left(e^{i \theta}|0\rangle+(-1)^{s} e^{-i \theta}|1\rangle\right)$

MBQC in edge modes of 1d resource state

We have unitary gates acting on the virtual space $U_{k} \in\left\{H Z e^{-i \theta_{k} Z}\right\}$

$$
\begin{aligned}
& \langle L| \quad|R\rangle \\
& \langle L|=\langle 0| \\
& \langle+++\cdots+\cdots \\
& |R\rangle=|\phi\rangle \\
& \left.\left.\langle L| U_{n} U_{n-1} \cdots U_{2} U_{1}|R\rangle \times\left|s_{1}\right\rangle\right\rangle_{1}^{(X)}\left|s_{2}\right\rangle\right\rangle_{2}^{(X)} \ldots
\end{aligned}
$$

In the virtual space, we get quantum gates that generates $S U(2)$ rotations on an "initial state" $|\phi\rangle$,

$$
U_{n} U_{n-1} \cdots U_{2} U_{1}|R\rangle
$$

Once we measure all the physical qubits, we observe the probability distribution of projecting the virtual state to $|L\rangle$.

MBQC in edge modes of 1d resource state

Edge modes seem to play an important role in MBQC. [Gross-Eisert (2006)]

Indeed, resource states for the universal MBQC found so far belong to some SPT phases, states in which admit degenerate boundary modes.
E.g. AKLT state, cluster states in 1d/2d.

Some works have even proved that the universal MBQC is possible with states in the entire SPT phase. E.g. 2d cluster phase (protected by rigid line symmetries.)

Plan

Part I: Quantum computation by measurement

- Stabilizer formalism
- Graph state
- Gate teleportation
- Universal quantum computation on graph states

Part II: Measurement-based quantum computation and lattice gauge theory

- Measurement as a shortcut to topological orders
- \mathbb{Z}_{2} lattice gauge theory
- Quantum simulation of lattice gauge theories

Toric code

- Kitaev's toric code
- Described by a Hamiltonian

$$
H_{\mathrm{TC}}=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

- $A_{v}|g s\rangle=B_{p}|g s\rangle=|g s\rangle$.
- \# edges $=2|V|$
- \# plaquettes $=|V|$
- \# vertices $=|V|$

plaquette term B_{p}
$A_{v} \quad$ star term
- On a torus, stabilizers are not completely independent:

$$
\prod_{p \in P} B_{p}=1, \quad \prod_{v \in V} A_{v}=1 .
$$

The ground state is degenerate, and the degeneracy depends on the background topology.
\rightarrow Topological order.

Long-range entanglement

- Bravyi-Hastings-Verstraete (2006) showed that ground states with a topological order cannot be prepared by any local time-dependent Hamiltonian evolution from any product state within a finite time.
- Finite-time (finite depth of quantum circuits) : $\mathcal{O}(1)$ with respect to the system size.
- In condensed matter physics, this is used to classify different topological orders of gapped quantum systems. \rightarrow Long-range entanglement

Gapped ground states with different topological orders cannot be connected by finite-depth local unitary transformations.

- The toric code state is a long-range entangled state.

Short-range entanglement

- When a system is not long-range entangled, it is said to be short-range entangled.
- Are short-range entangled states uninteresting?
- There are states that cannot be obtained by finite-depth local symmetry-preserving unitary transformations.
- They are called Symmetry-Protected Topological order states.

SPT-ordered states cannot be prepared from a product state by finite-depth symmetry-preserving local unitary transformations.

- Note, however, that if you wish to prepare an SPT ordered state, you can simply construct a finite-depth local unitary circuit without symmetries.
- Cluster states are short-range entangled states.

Short-range entanglement

- 1 d cluster state is an SPT protected by $\mathbb{Z}_{2}[0] \times \mathbb{Z}_{2}[0]$

$$
\begin{array}{r}
1=\prod_{j \in \mathbb{Z}} K_{2 j}=\prod_{j \in \mathbb{Z}} Z_{2 j-1} X_{2 j} Z_{2 j+1}=\prod_{j \in \mathbb{Z}} X_{2 j} \\
1=\prod_{j \in \mathbb{Z}} K_{2 j+1}=\prod_{j \in \mathbb{Z}} Z_{2 j} X_{2 j+1} Z_{2 j+2}=\prod_{j \in \mathbb{Z}} X_{2 j+1}
\end{array}
$$

$\left[C Z, \prod_{\text {even }} X\right] \neq 0, \quad\left[C Z, \prod_{\text {odd }} X\right] \neq 0$, thus we cannot use $C Z$ as a symmetry-preserving
local unitary to bring it down to the trivial product state.

Short-range entanglement

- 2 d cluster state protected by $\mathbb{Z}_{2}[0] \times \mathbb{Z}_{2}[1]$
e.g. [Yoshida (2016)] [HS-Okuda (2022)] [Verresen-Borla-Vishwanath-Moroz-Thorngren (2022)]

$$
\begin{array}{ll}
1 & =\prod_{v} K_{v}=\prod_{v} X_{v}
\end{array}: \mathbb{Z}_{2}[0] ~ 子 \begin{array}{ll}
v \\
1 & =\prod_{e \in \gamma} K_{e}=\prod_{e \in \gamma}^{v} X_{e}
\end{array}: \mathbb{Z}_{2}[1]
$$

Note some similarity with the toric code, although they are in different phases:

$$
\begin{array}{ll}
Z & X_{X}^{X} X=1 \\
Z-X-Z=1 & \\
Z &
\end{array}
$$

Measurement as a shortcut to topological orders

- The toric code cannot be prepared with finite-depth local unitaries from a product state.
- One obvious loophole is to use non-unitary operations. \rightarrow Measurement ?
- Cluster-state (graph-state) entangler only produces short-range entanglement.
- This is because the CZ gates are mutually commutative. So one can apply the entangler at once, i.e., the depth is 1 .
- First, I'm going to explain:

Measurement as a shortcut to topological orders

- Cluster state on the Lieb lattice
- Qubits are placed on edges and vertices
- Apply CZ's to nearest-neighbor qubits.
* edge and vertex in the sense of the lattice, not a graph

$$
K_{e}=X_{e} \prod_{v \in e} Z_{v}, K_{v}=X_{v} \prod_{e \supset v} Z_{e}
$$

- There is a global symmetry in this cluster state.

$$
\prod_{v} \prod_{v}\left|\psi_{\mathscr{C}}\right\rangle=\prod_{v} X_{v}\left|\psi_{\mathscr{C}}\right\rangle=\left|\psi_{\mathscr{C}}\right\rangle
$$

Measurement as a shortcut to topological orders

Feedforwarded
Pauli ops.
Product state $\xrightarrow{C Z}$ cluster state \longrightarrow post-measurement \longrightarrow toric code

- Measure vertex qubits in the X basis.

New stabilizers:

$$
\pm X_{v}, \quad \pm \prod_{e \supset v} Z_{e}, \quad \prod_{e \subset p} X_{e}
$$

The last one is the product of K_{e} stabilizers around a plaquette p.
(K_{e} anti-commutes with X_{v}, but $\prod_{e \subset p} X_{e}$ commutes.)
It's not quite the ground state of the toric code...

Measurement as a shortcut to topological orders

Feedforwarded
Product state $\xrightarrow{C Z}$ cluster state $\longrightarrow \begin{gathered}\text { post-measurement } \\ \text { state }\end{gathered}$

- The global symmetry constraints the measurement outcomes: $x_{v}= \pm 1$.

$$
\bar{\prod} x_{v}\left|\psi_{\mathscr{C}}\right\rangle=\left|\psi_{\mathscr{C}}\right\rangle .
$$

This means that there are always an even number of -1 outcomes!

- This implies that the outcome state is the toric code ground state with string operators that pair up -1 outcomes. (Next slide)

Measurement as a shortcut to topological orders

- Left figure:

The outcome state can be written as

$$
\left(\prod_{e \in \text { string }} X_{e}\right)|g s\rangle
$$

Indeed, at the endpoints of the string, Z stabilizers are flipped.

The shape of the path doesn't matter, as the X stabilizer can deform strings.

Measurement as a shortcut to topological orders

Feedforwarded Pauli ops.

Product state \longrightarrow cluster state

\longrightarrow post-measurement state

- One can counter the randomness by applying Pauli X operators.

$$
\left.\left(\prod_{e \in \text { strings }} X_{e}\right) \mid \text { out }\right\rangle=|g s\rangle
$$

- Fin.

Measurement as a shortcut to topological orders

The technique can be generalized for any \mathbb{Z}_{2} (and some other discrete groups) symmetric state. [Tantivasadakarn-Thorngren-Vishwanath-Verresen (2021)] [Lu-Lessa-Kim-Hsieh (2022)] etc.

The operations in total yields measurement-based Kramers-Wannier-Wegner transformation

$$
\mathrm{KW}=\left\langle+\left.\right|^{V} \prod C Z_{e, v} \mid+\right\rangle^{E}
$$

As we'll see, the toric code is an example and a special limit of lattice gauge theories.

$$
H_{\text {gauge theory }} \mathrm{KW}=\mathrm{KW} H_{\text {Ising }}
$$

KW can be seen as a space-like interface between two dual theories.

Measurement as a shortcut to topological orders

nature

Explore content \sim

Physicists create long-sought topological quantum states

Exotic particles called nonabelions could fix quantum computers' error problem.

Davide Castelvecchi

M. Iqbal et al. arXiv:2305.03766

Plan

Part I: Quantum computation by measurement

- Stabilizer formalism
- Graph state
- Gate teleportation
- Universal quantum computation on graph states

Part II: Measurement-based quantum computation and lattice gauge theory

- Measurement as a shortcut to topological orders
- \mathbb{Z}_{2} lattice gauge theory
- Quantum simulation of lattice gauge theories

Hamiltonian lattice gauge theories

Let us start with $(2+1)$ d transverse-field Ising model, which is equivalent to the 3d classical Ising model. I explain the connection between the two. Cf. [J. Kogut (1976)]

$$
Z_{\text {Ising }}=\sum_{\left\{s_{v}= \pm 1\right\}} e^{-\beta[s]}
$$

where

$$
I[s]=-K \sum_{e} \prod_{v \subset e} s_{v} .
$$

is the Ising Hamiltonian on the 3d square lattice.
We take one direction, say the z direction, as a special direction and make the coupling constant anisotropic.

$$
I_{\text {anis. }}[s]=-K_{s} \sum_{e \in E_{x} \cup E_{y}} \prod_{v \subset e} s_{v}-K_{t} \sum_{e \in E_{z}} \prod_{v \subset e} s_{v}
$$

We view the x and y directions as spatial, and z as temporal.

Hamiltonian lattice gauge theories

A simple rewriting gives us

$$
\begin{aligned}
I_{\text {anis. }}[s] & =-K_{s} \sum_{e \in E_{x} \cup E_{y}} \prod_{v \subset e} s_{v}-K_{t} \sum_{e \in E_{z}} \prod_{v \subset e} s_{v} \\
& \sim-K_{s} \sum_{e \in E_{x} \cup E_{y}} \prod_{v \subset e} s_{v}+\frac{K_{t}}{2} \sum_{e \in E_{z}}\left(s_{v(e)_{+}}-s_{v(e)_{-}}\right)^{2}
\end{aligned}
$$

up to a constant. Here,

$$
v(e)_{+}=\{x, y, z+1\} \text { and } v(e)_{-}=\{x, y, z\} \text { for } e=\{x, y\} \times[z, z+1] .
$$

To derive a 2d quantum Hamiltonian related via

$$
Z_{\text {Ising }} \simeq \operatorname{Tr}\left(e^{-\tau H}\right)
$$

we take the spin variable as the basis of the Hilbert space. We also take an approximation $e^{-\tau H} \simeq\left(e^{-\Delta \tau H}\right)^{N}$.
At each temporal slice $z=$ int., we insert a complete basis

$$
\bigotimes_{v \in V_{z=j}}\left|s_{v}\right\rangle\left\langle s_{v}\right|
$$

Hamiltonian lattice gauge theories

We aim to find H such that

$$
Z_{\text {Ising }} \simeq \operatorname{Tr}\left(\bigotimes_{v \in V_{j}}\left\langle s_{v}\right| e^{-\Delta \tau H} \bigotimes_{v^{\prime} \in V_{j+1}}\left|s_{v^{\prime}}\right\rangle\right)^{N} .
$$

Relate parameters as

$$
\beta K_{s}=\lambda e^{-2 \beta K_{t}}, \Delta \tau=e^{-2 \beta K_{t}}, \beta K_{t} \rightarrow \infty(\text { small } \Delta \tau \text { limit }) .
$$

First look at the diagonal transfer matrix elements:

$$
\exp \left(-\beta K_{s} \sum_{e \in E_{x} \cup E_{y}} \prod_{v \subset e} s_{v}\right) \longleftrightarrow \exp \left(-\Delta \tau \sum_{e \in E_{x} \cup E_{y}} \prod_{v \subset e} Z_{v}\right) \text { for each } z \text { slice. }
$$

So we have

$$
H_{\mathrm{diag}}=-\lambda \sum_{e \in E} \prod_{v \subset e} Z_{v} .
$$

Hamiltonian lattice gauge theories

We aim to find H such that

$$
Z_{\mathrm{Ising}} \simeq \operatorname{Tr}\left(\bigotimes_{v \in V_{j}}\left\langle s_{v}\right| e^{-\Delta \tau H} \bigotimes_{v^{\prime} \in V_{j+1}}\left|s_{v^{\prime}}\right\rangle\right)^{N}
$$

Relate parameters as

$$
\beta K_{s}=\lambda e^{-2 \beta K_{t}}, \Delta \tau=e^{-2 \beta K_{t}}, \beta K_{t} \rightarrow \infty(\text { small } \Delta \tau \text { limit }) .
$$

Next look at a single-shift transition. Say $\left\{s_{v}\right\}$ and $\left\{s_{\nu^{\prime}}\right\}$ differ at one site between j and $j+1$.
Due to the term $-\beta \frac{K_{t}}{2} \sum_{e \in E_{z}}\left(s_{v(e)_{+}}-s_{v(e)_{-}}\right)^{2}$, the Boltzmann factor gains a weight $e^{-2 \beta K_{t}}$.
We identify as

$$
\left\langle\left\{s_{v}\right\}\right|(-\Delta \tau H)\left|\left\{s_{v^{\prime}}\right\}\right\rangle \simeq e^{-2 \beta K_{t}} \equiv \Delta \tau
$$

This is generated by

$$
H_{\mathrm{off}-\mathrm{diag}}=-\sum_{u \in V} X_{u}
$$

Hamiltonian lattice gauge theories

In total, we have for 3d classical Ising model (in a certain limit) that

$$
Z_{\text {Ising }} \simeq \operatorname{Tr}\left(e^{-\Delta \tau H}\right)^{N}
$$

with

$$
H=H_{\mathrm{TFI}}=-\sum_{v \in V} X_{v}-\lambda \sum_{e \in E} \prod_{v \subset e} Z_{v}
$$

where the vertices and edges are those in 2-dimensions (xy-slices).

This construction straightforwardly generalizes to classical Ising models in arbitrary dimensions and we get (quantum) transverse-field Ising models in one-dimension lower.

This also generalizes to lattice gauge theories. (Next slide)

Hamiltonian lattice gauge theories

Consider the $G=\mathbb{Z}_{2}$ version of Wilson's plaquette action:

$$
I\left[\left\{u_{e}= \pm 1\right\}\right]=-J \sum_{p \in P} \prod_{e \subset p} u_{e} .
$$

The action in invariant under the simultaneous flip of spins on edges (links) around a vertex.

We again make the coupling constants anisotropic.
We make use of the gauge transformation to fix spins on temporal edges (temporal link variables) to 1 . Then we get

$$
I\left[\left\{u_{e}= \pm 1\right\}\right]=-J_{s} \sum_{p \in P_{x y}} \prod_{e \subset p} u_{e}-J_{t} \sum_{p \in P_{\cdot z}} u_{e(p)_{+}} u_{e(p)_{-}}
$$

where $e(p)_{+}$and $e(p)_{-}$are edges in the plaquette p at larger and smaller 'temporal' coordinate, respectively.
Just as in the study with Ising models, we can again use $u_{e(p)_{+}} u_{e(p)_{-}}=-\frac{1}{2}\left(u_{e(p)_{+}}-u_{e(p)_{-}}\right)^{2}+1$

Hamiltonian lattice gauge theories

We have for d-dim Euclidean path integral of the lattice gauge theory that

$$
Z_{\text {Gauge }} \simeq \operatorname{Tr}\left(e^{-\Delta \tau H}\right)^{N}
$$

with

$$
H=H_{\text {Gauge }}=-\sum_{e \in E} X_{e}-\lambda \sum_{p \in P} \prod_{e \subset p} Z_{e}
$$

where the edges and plaquettes are those in $(d-1)$-dimensions.

We already used the gauge redundancy to fix the temporal link variables to 1 . However, there is residual gauge redundancy, which is generated by simultaneous gauge transformations over temporal coordinates at a fixed vertex in the spatial slice.
In terms of the quantum system, this is generated by the Gauss law divergence operator

$$
G_{v}=\prod_{e \supset v} X_{e} .
$$

One can check that $\left[H_{\text {Gauge }}, G_{v}\right]=0$.

Hamiltonian lattice gauge theories

- Toric code:

$$
H_{\mathrm{TC}}=-\sum_{v} A_{v}-\sum_{p} B_{p}
$$

- The \mathbb{Z}_{2} lattice gauge theory may be written as

$$
H_{\text {Gauge }}=-\sum_{e \in E} X_{e}-\lambda \sum_{p \in P} B_{p}
$$

with $G_{v}=A_{v}=1$.

- In condensed matter physics, the toric code (with
 some extra terms) is often referred to as a 'lattice gauge theory' in this sense.

Hamiltonian lattice gauge theories

Product state \longrightarrow cluster state \longrightarrow post-measurement \longrightarrow toric code state

Feedforwarded
Pauli ops.

We ask, is there a generalization of the measurement-based preparation of the toric code to that of lattice gauge theories?

It turns out that the method above can indeed implement the Kramers-Wannier-Wegner duality transformation from the Ising model to the lattice gauge theory.

Hamiltonian lattice gauge theories

Ising model

$\underset{\sim}{x}$
Feedforwarded
Pauli ops.
\qquad

- Start with a state on vertices $|\psi\rangle$
- Introduce ancilla d.o.f. on edges $|+\rangle^{\otimes E}$
. Apply the cluster-state entangler $\mathcal{U}_{C Z}=\prod_{e \in E} \prod_{v \subset e} C Z_{e, v}$
- Measure vertex d.o.f. in the X basis
- As described previously, perform corrections against randomness. This is possible if we have an even number of $|-\rangle$ outcomes. (Post-select.)
- All put together, we are implementing an operator

$$
\mathrm{KW}=\left\langle+\left.\right|^{\otimes V} \mathcal{U}_{C Z} \mid+\right\rangle^{\otimes E} \quad \mathrm{KW}: \mathscr{H}_{V} \rightarrow \mathscr{H}_{E}
$$

Hamiltonian lattice gauge theories

$\mathrm{KW}=\left\langle+\left.\right|^{\otimes V} \mathscr{U}_{C Z} \mid+\right\rangle^{\otimes E}$ with $\mathscr{U}_{C Z}=\prod_{e \in E} \prod_{v \subset e} C Z_{e, v}$ implements the following map:

$$
\begin{gathered}
X_{e} \mathrm{KW}=\mathrm{KW} Z_{v(e)_{1}} Z_{v(e)_{2}} \\
Z_{e(v)_{1}} Z_{e(v)_{2}} Z_{e(v)_{3}} Z_{e(v)_{4}} \mathrm{KW}=\mathrm{KW} X_{v}
\end{gathered}
$$

In the dual lattice picture, $X_{e}=X_{e^{*}}$ and $Z_{e(v)_{1}} Z_{e(v)_{2}} Z_{e(v)_{3}} Z_{e(v)_{4}}=Z_{e^{*}\left(p^{*}\right)_{1}} Z_{e^{*}\left(p^{*}\right)_{2}} Z_{e^{*}\left(p^{*}\right)_{3}} Z_{e^{*}\left(p^{*}\right)_{4}}=B_{p^{*}}$.

$$
\mathrm{KW} \cdot H_{\text {Ising }}=H_{\text {Gauge }} \mathrm{KW}
$$

This is a gauging operation such that

$$
\begin{aligned}
\mathrm{KW} \cdot \prod_{v \in V} X_{v} & =\mathrm{KW} \quad \text { (global symmetry in } \mathscr{H}_{V} \text { gets trivialized) } \\
\mathrm{KW} & =G_{v^{*}} \cdot \mathrm{KW} \quad \text { (Gauss law in } \mathscr{H}_{E} \text { emerges) }
\end{aligned}
$$

Hamiltonian lattice gauge theories

This may be used for a quantum simulation. Suppose we start with a state that satisfies $\prod X_{\nu}|\psi\rangle=|\psi\rangle$ (to ensure that the number of the $|-\rangle$ outcome is even). $v \in V$

A real-time evolution

$$
e^{-i t H_{\text {ling }}}|\psi\rangle
$$

can be transformed by the measurement-based gauging procedure as

$$
\mathrm{KW} e^{-i t H_{\text {Ising }}}|\psi\rangle=e^{-i t H_{\text {Gauge }} \mathrm{KW}}|\psi\rangle .
$$

When the state $|\psi\rangle$ is in the paramagnetic phase $\left(\simeq|+\rangle^{\otimes V}\right)$, then the gauged state $\mathrm{KW}|\psi\rangle$ is in the deconfining phase $(\simeq$ toric code).

Hamiltonian lattice gauge theories

- By a Lieb-Robinson bound [Bravyi-Hastings-Verstraete], it is expected that a state in the toric code phase cannot be obtained by a constant-depth unitary circuit. Measurement supplies nonunitarity to give a short-cut to a quantum simulation in the deconfining regime. [Ashkenazi-Zohar (2021), HS-Wei (2023)]
- The idea of performing KW on the Ising quantum simulation could be implemented on real quantum devices in the near future, as the Ising quantum simulation requires less connectivity.
■ In $(3+1)$ dimensions, the lattice \mathbb{Z}_{2} gauge theory is self-dual. Gauging may not be so useful as a short cut for simulating such models.
- Below, we consider a quantum simulation scheme motivated by MBQC.

A formula

- Consider a general "initial state" $|\psi\rangle_{b c}$
- Prepare a "resource state" $C Z_{a, b} C Z_{a, c}|\psi\rangle_{b c}|+\rangle_{a}$
\bullet Measure the middle qubit with $\left\{e^{i \xi X}|0\rangle, e^{i \xi X}|1\rangle\right\}$, i.e., $X^{s} e^{i \xi X}|0\rangle \quad(s=0,1)$

$$
\begin{aligned}
&\left\langle\left. 0\right|_{a} e^{-i \xi X_{a}} X_{a}^{s}\right. C \\
& C Z_{a, b} C Z_{a, c}|\psi\rangle_{b c}|+\rangle_{a}=e^{-i \xi Z_{b} Z_{c}\left(Z_{b} Z_{c}\right)^{s}|\psi\rangle_{b c}} \\
& \rightarrow \text { Multi-qubit rotation. }
\end{aligned}
$$

Cluster state for quantum simulation

- Simulating (1+1)d transverse-field Ising model on the 2d cluster state

Cluster state for quantum simulation

- Simulating (1+1)d transverse-field Ising model on the 2 d cluster state

Cluster state for quantum simulation

- Simulating (1+1)d transverse-field Ising model on the 2 d cluster state

Cluster state for quantum simulation

- Simulating $(1+1) \mathrm{d}$ transverse-field Ising model on the 2 d cluster state

Cluster state for quantum simulation

- Simulating $(1+1) \mathrm{d}$ transverse-field Ising model on the 2 d cluster state

Plan

Part I: Quantum computation by measurement

- Stabilizer formalism
- Graph state
- Gate teleportation
- Universal quantum computation on graph states

Part II: Measurement-based quantum computation and lattice gauge theory

- Measurement as a shortcut to topological orders
- \mathbb{Z}_{2} lattice gauge theory
- Quantum simulation of lattice gauge theories

Wegner's generalized Ising models

Cell simplex σ_{i}

σ_{0}	σ_{1}	σ_{2}	σ_{3}
\bullet			

$\breve{\sigma}_{i}:$ cell simplices in d dimensional hypercube lattice
$\sigma_{i}:$ cell simplices in $d-1$ dimensional hypercube lattice

$$
\breve{\sigma}_{i}=\sigma_{i} \times\{j\} \quad \text { or } \breve{\sigma}_{i+1}=\sigma_{i} \times[j, j+1]
$$

Point
Interval
x_{d} coordinate

$$
(d-1)-\mathrm{dim}
$$

$$
\begin{array}{r}
\{j\} \\
{[j, j+1]} \\
\{j+1\} \\
x_{d}
\end{array} \downarrow \quad \bullet \breve{\sigma}_{0}=\sigma_{0} \times\{j\} \quad \stackrel{\sigma_{0}}{ } \quad \begin{array}{ll}
\\
& d \text {-dim }
\end{array}
$$

Similarly, we have cell simplices in the dual lattice with $\sigma_{i} \simeq \sigma_{d-i}^{*}$. We have $\partial^{2}=0\left(\right.$ and $\left.\left(\partial^{*}\right)^{2}=0\right)$ and a chain complex.

$$
\begin{aligned}
& \partial\left(\sigma_{2} \stackrel{\text { dual }}{\longleftrightarrow} \stackrel{\sigma}{0}_{*}^{*}\right)=\left(\square_{\square} \stackrel{\text { dual }}{\longleftrightarrow}-\mid-\right) \\
& \partial^{*}\left(\left.\frac{\sigma_{1}}{\longleftrightarrow} \stackrel{\text { dual }}{\longleftrightarrow}\right|_{\sigma_{1}^{*}}\right)=(\square \stackrel{\text { dual }}{\longleftrightarrow} \cdot)
\end{aligned}
$$

Wegner's generalized Ising model

Model $M_{(d, n)}$:
Classical spin variables $S_{\breve{\sigma}_{n-1}} \in\{+1,-1\}$ living on $(n-1)$-cells in the d -dimensional hybercubic lattice. [Wegner (1971)]

Euclidean action (classical Hamiltonian) I :

$$
I=-J \sum_{\breve{\sigma}_{n}}\left(\prod_{\breve{\sigma}_{n-1} \subset \partial \breve{\sigma}_{n}} S_{\breve{\sigma}_{n-1}}\right)
$$

Via the transfer matrix formalism, we obtain a quantum Hamiltonian in $(d-1)$ dimensions with the continuous time.

$$
H_{(d, n)}=-\sum_{\sigma_{n-1}} X\left(\sigma_{n-1}\right)-\lambda \sum_{\sigma_{n}} Z\left(\partial \sigma_{n}\right)
$$

Wegner's generalized Ising model

Classical Ising model
$M_{(d, 1)}$
$I=-J \sum_{\text {edge }} S\left(\partial \breve{\sigma}_{1}\right)$
site variable

Transverse field Ising model

$$
H_{(d, 1)}=-\sum_{\sigma_{0}} X\left(\sigma_{0}\right)-\lambda \sum_{\sigma_{1}} Z\left(\partial \sigma_{1}\right)
$$

Gauge theory (Wilson's plaquette action for $G=\mathbb{Z}_{2}$)
$M_{(d, 2)}$

$$
I=-J \sum_{\text {plaquette }} S\left(\partial \breve{\sigma}_{2}\right)
$$

Quantum pure gauge theory

$$
H_{(d, 2)}=-\sum_{\sigma_{1}} X\left(\sigma_{1}\right)-\lambda \sum_{\sigma_{2}} Z\left(\partial \sigma_{2}\right)
$$

Wegner's generalized Ising model

We wish to simulate a Trotterized (real) time evolution:

$$
|\psi(t)\rangle=U(t)|\psi(0)\rangle
$$

with

$$
T(t=j \Delta t)=\left(\prod_{\sigma_{n-1}} e^{i \Delta t X\left(\sigma_{n-1}\right)} \prod_{\sigma_{n}} e^{i \Delta t \lambda Z\left(\partial \sigma_{n}\right)}\right)^{j}
$$

MBQS of lattice gauge theories

MBQS

$|\psi(t)\rangle_{\text {bdry }}$: simulated state of $M_{(d, n)}$ with the Trotterized time evolution $T(t)$,

$$
|\psi(t)\rangle_{\mathrm{bdry}}=T(t)|\psi(0)\rangle .
$$

$\left|\psi_{C}\right\rangle_{\text {bulk }}$: resource state to be measured - generalized cluster state (gCS).

MBQS

Entanglement in our resource state, $\mathrm{gCS}_{(d, n)}$ (generalized cluster state), is tailored to reflect the space-time structure of the model $M_{(d, n)}$:

$$
\begin{aligned}
& \left|\mathrm{gCS}_{(d, n)}\right\rangle:=\mathscr{U}_{C Z}|+\rangle^{\breve{\Delta}_{n}}|+\rangle^{\Delta_{n-1}} \\
& \mathcal{U}_{C Z}=\prod_{\breve{\sigma}_{n} \in \breve{\Delta}_{n}}\left(\prod_{\breve{\sigma}_{n-1} \subset \partial \breve{\sigma}_{n}} C Z_{\breve{\sigma}_{n-1}, \breve{\sigma}_{n}}\right) .
\end{aligned}
$$

$(d, n)=(3,1)$

0-cell $\breve{\sigma}_{0}$ 1-cell $\breve{\sigma}_{1}$

$(d, n)=(3,2)$
[Raussendorf Bravyi Harrington (2007)]

1-cell $\breve{\sigma}_{1}$
2-cell $\breve{\sigma}_{2}$

MBQS: simulating $M_{(3,1)}$ on $\mathrm{gCS}_{(3,1)}$

MBQS: simulating $M_{(3,1)}$ on $\mathrm{gCS}_{(3,1)}$

MBQS: simulating $M_{(3,2)}$ on $\mathrm{gCS}_{(3,2)}$

\leftarrow Load a 2d initial state $|\psi(0)\rangle_{\text {bdry }}$ of the gauge theory

MBQS: simulating $M_{(3,2)}$ on $\mathrm{gCS}_{(3,2)}$

MBQS: simulating $M_{(d, n)}$ on $\mathrm{gCS}_{(d, n)}$

A state in $M_{(d, n)}$

Single-qubit measurements

MBQS: simulating $M_{(d, n)}$ on $\mathrm{gCS}_{(d, n)}$

Ex. $M_{(3,2)}$ gauge theory

- We consider a faulty resource state $\left|\mathrm{gCS}^{E}\right\rangle=Z\left(\breve{e}_{1}\right) X\left(\breve{e}_{1}^{\prime}\right) Z\left(\breve{e}_{2}\right) X\left(\breve{e}_{2}^{\prime}\right)|\mathrm{gCS}\rangle$
- Perfect (non-faulty) measurement

The 2d simulated state at $x_{3}=j(t=j \delta t)$ looks like:

$$
|\psi(t)\rangle=Z\left(e_{1}^{(j)}\right) X\left(e_{1}^{(j)}\right)\left(\prod_{k}^{j} \Sigma^{(k)}\right) U^{E}(t)|\psi(0)\rangle
$$

with $U^{E}(t)$ being Trotter evolution unitary with parameters $\tilde{\xi}_{1,4}$ being faulty.

$$
\left[Z\left(e_{1}^{(j)}\right), G\left(\sigma_{0}\right)\right] \neq 0 \quad \text { The error chain } Z\left(e_{1}^{(j)}\right) \text { is caused by } Z\left(\breve{e}_{1}\right) .
$$

MBQS: simulating $M_{(d, n)}$ on $\mathrm{gCS}_{(d, n)}$

- A symmetry of gCS: $|\mathrm{gCS}\rangle=X\left(\partial^{*} \breve{\sigma}_{0}\right)|\mathrm{gCS}\rangle$
- Error chain $Z\left(\breve{e}_{1}\right)$ flips the eigenvalue of $X\left(\partial^{*} \breve{\omega}_{0}\right)$.
- In MBQS, the measurements at 1 -chains are in X-basis.
- \rightarrow endpoints of $Z\left(\breve{e}_{1}\right)$ can be detected

MBQS: simulating $M_{(d, n)}$ on $\operatorname{gCS}_{(d, n)}$

- A symmetry of gCS: $|\mathrm{gCS}\rangle=X\left(\partial^{*} \breve{\sigma}_{0}\right)|\mathrm{gCS}\rangle$
- Error chain $Z\left(\breve{e}_{1}\right)$ flips the eigenvalue of $X\left(\partial^{*} \breve{\sigma}_{0}\right)$.
- In MBQS, the measurements at 1-chains are in X-basis.
- \rightarrow endpoints of $Z\left(\breve{e}_{1}\right)$ can be detected

MBQS: simulating $M_{(d, n)}$ on $\mathrm{gCS}_{(d, n)}$

With correction, the 2 d simulated state at $x_{3}=j$ ($t=j \delta t$) looks like:

$$
|\psi(t)\rangle=Z\left(z_{1}^{(j)}\right) X\left(e_{1}^{(j)}\right)\left(\prod_{k}^{j} \Sigma^{(k)}\right) U^{E+R}(t)|\psi(0)\rangle
$$

with $z_{1}^{(j)}$ being $\partial z_{1}^{(j)}=0$.

$$
|\psi(T)\rangle=Z\left(z_{1}^{\left(L_{3}\right)}\right) X\left(e_{1}^{\left(L_{3}\right)}\right) U^{E+R}(T)|\psi(0)\rangle
$$

Gauss law is enforced:

$$
G\left(\sigma_{0}\right)|\psi(T)\rangle=|\psi(T)\rangle
$$

Overlap formula

Overlap formula

Our MBQS measurement pattern is related to the overlap formula below:

2d classical Ising partition function
<

- $\langle 0| e^{-K X}$
$0<+1$

$\mathrm{gCS}_{(2,1)}$
Resource state for $(1+1) \mathrm{d}$ transverse-field Ising model

It is a classical-quantum correspondence [Van den Nest-Dur-Briegel (2008)] relating a 2d quantum state and a 2d classical statistical model. See also [Lee-Ji-Bi-Fisher (2022)] [Matsuo-Fujii-Imoto (2014)].
The state $\langle 0| e^{-K X}$ is different from $\langle 0| e^{-i \xi X}$, which we used in MBQS, however.

Overlap formula

Let us check this formula.

$$
\begin{aligned}
& \left\langle+\left.\right|^{V} \bigotimes_{e \in E}\langle 0| e^{K X_{e}} \mid \mathrm{gCS}\right\rangle \\
& \left\langle+\left.\right|^{V} \bigotimes_{e \in E}\langle 0| e^{K X_{e}}\left(\prod_{e \in E} \prod_{v \subset e} C Z_{e, v}\right) \mid+\right\rangle^{V}|+\rangle^{E} \\
& =\left\langle+\left.\right|^{V}\left\langle\left. 0\right|^{E}\left(\prod_{e \in E} \prod_{v \subset e} C Z_{e, v}\right) \prod_{e \in E} e^{K X_{e} \Pi_{v c e} Z_{v}} \mid+\right\rangle^{V} \mid+\right\rangle^{E} \\
& =\left\langle+\left.\right|^{V}\left\langle\left. 0\right|^{E} \prod_{e \in E} e^{(+1) K \prod_{v C e} Z_{v}} \mid+\right\rangle^{V} \mid+\right\rangle^{E} \\
& =\frac{1}{2^{|E| / 2}}\left\langle+\left.\right|^{V} \prod_{e \in E} e^{(+1) K \prod_{v c e} Z_{v}} \mid+\right\rangle^{V}
\end{aligned}
$$

Overlap formula

As Z is a diagonal operator in the computational basis, it reduces to evaluation of the exponential over all possible ± 1 configuration on vertices. We get

$$
\begin{aligned}
& \frac{1}{2^{|E| / 2}}\left\langle+\left.\right|^{V} \prod_{e \in E} e^{(+1) K} \prod_{v c e^{\prime}} Z_{v}\right. \\
& =\frac{1}{2^{|E| / 2} 2^{|V|}} \sum_{\left\{s_{v} \pm \pm 1\right\}_{v \in V}} \prod_{e \in E} e^{K} \prod_{v c e^{s_{v}}} \\
& =\frac{1}{2^{|E| / 2} 2^{|V|}} \sum_{\left\{s_{v}= \pm 1\right\}_{v \in V}} e^{K \sum_{e \in E} \Pi_{v c e} s_{v}}
\end{aligned}
$$

Thus we have

$$
\left\langle+\left.\right|^{V} \bigotimes_{e \in E}\langle 0| e^{K X_{e}} \mid \mathrm{gCS}\right\rangle=\frac{1}{2^{|E| / 2} 2^{|V|}} Z_{\text {Ising }}(K)
$$

Overlap formula

Rewriting it further,

$$
Z_{(2,1)}=\mathscr{N} \times
$$

2d classical Ising partition function

This is a 'map' from a topologically ordered state to a classical partition function. In condensed matter physics, this type of relation is called a strange correlator.
[Bal et al., Phys. Rev. Lett. 121, 177203 (2018)]

Overlap formula

Qubits on E and V

Qubits on E and P

Overlap formula

- The state $|\Phi\rangle$ is stabilized by $X_{L}|\Phi\rangle=|\Phi\rangle$
- The state $\left|\Phi^{*}\right\rangle$ is stabilized by $Z_{L}\left|\Phi^{*}\right\rangle=\left|\Phi^{*}\right\rangle$
- X_{L} and Z_{L} anti-commute on a torus.

The precise relation is:

$$
\mathrm{H}\left|\Phi^{*}\right\rangle=\frac{1}{H_{1}\left(T^{2}, \mathbb{Z}_{2}\right)} \sum_{[\ell] \in H_{1}\left(T^{2}, \mathbb{Z}_{2}\right)} Z_{\ell}|\Phi\rangle
$$

Note:

$$
X_{L}|\mp\rangle=|\mp\rangle, \quad Z_{L}|\overline{0}\rangle=|\overline{0}\rangle, \quad|\mp\rangle=\frac{1}{\sqrt{2}}(|\overline{0}\rangle+|\overline{1}\rangle)
$$

Overlap formula

We obtained:

$$
\mathrm{H}\left|\Phi^{*}\right\rangle=\frac{1}{H_{1}\left(T^{2}, \mathbb{Z}_{2}\right)} \sum_{[\ell] \in H_{1}\left(T^{2}, \mathbb{Z}_{2}\right)} Z_{\ell}|\Phi\rangle
$$

There's an identity $\langle 0| e^{K X} \mathrm{H}=\sqrt{\sinh (K)}\langle 0| e^{K^{*} X}$ with $K^{*}=-\frac{1}{2} \log \tanh (K)$.

The identity

$$
\langle 0| e^{K X}\left|\Phi^{*}\right\rangle=\langle 0| e^{K X} \mathrm{H} \cdot \mathrm{H}\left|\Phi^{*}\right\rangle
$$

implies that

$$
Z_{\text {dual }}(K) \sim(\sinh K)^{|E| / 2} \sum_{[\ell] \in H_{1}\left(T^{2}, \mathbb{Z}_{2}\right)} Z\left(K^{*} ; \ell\right)
$$

where $Z\left(K^{*} ; \ell\right)$ is a twisted partition function of 2 d classical partition function and $Z_{\text {dual }}(K)$ is the Ising partition function on the dual square lattice. The sign of the coupling constant is flipped along the line ℓ.

Aspects of symmetries I: SPT

Higher-form symmetries in gCS

$$
(d, n)=(3,1)
$$

$$
(d-n)=2 \text {-form symmetry }
$$

$$
(n-1)=0 \text {-form symmetry }
$$

$$
\partial \breve{z}_{1}=0
$$

$$
\partial^{*} z_{3}^{*}=0
$$

Higher-form symmetries in gCS

$$
(d, n)=(3,2)
$$

$(d-n)=1$-form symmetry

$$
\partial \breve{z}_{1}=0
$$

$$
(n-1)=1 \text {-form symmetry }
$$

Higher-form symmetries in gCS

($d-n$)-form and $(n-1)$-form symmetry:

$$
|\mathrm{gCS}\rangle=X\left(\breve{z}_{n}\right)|\mathrm{gCS}\rangle=X\left(\breve{z}_{d-n+1}^{*}\right)|\mathrm{gCS}\rangle
$$

$$
\text { with } M_{d-n}=\left\{\breve{z}_{n} \mid \partial \breve{z}_{n}=0\right\}, M_{n-1}^{\prime}=\left\{\breve{z}_{d-n+1}^{*} \mid \partial \breve{z}_{d-n+1}^{*}=0\right\} \text {. }
$$

SPT order in gCS

$$
\begin{aligned}
& \mathrm{gCS}_{(d, n)} \text { has an SPT order protected by }(d-n) \text {-form and } \\
& (n-1) \text {-form } \mathbb{Z}_{2}
\end{aligned}
$$

- Two symmetry generators act projectively at the boundaries of the lattice \rightarrow SPT. Cf. [Yoshida (2016)] [Roberts-Kubica-Yoshida-Bartlett (2017)].
- The simulated state as an edge state of an SPT.

Appendix

Aspects of symmetries II: Holographic correspondence?

Bulk/boundary symmetries in MBQS

A state in $M_{(d, n)}$

Boundary symmetry generator $X\left(z_{d-n}^{*}\right)$
Bulk symmetry generator $X\left(\tilde{z}_{d-n+1}^{*}\right)$ with

$$
\partial^{*} \breve{z}_{d-n+1}^{*}=0 \text { or }=z_{d-n}^{*} .
$$

Bulk/boundary symmetries in MBQS

Consider a d-dimensional Hamiltonian

$$
H=-\sum Z\left(\partial \breve{\sigma}_{n}\right),
$$

which is symmetric under the transformation with the global $(n-1)$-form, $X\left(\tilde{z}_{d-n+1}^{*}\right)$.

Cluster state gCS:

It is described by the local stabilizer conditions:

$$
X\left(\breve{\sigma}_{n}\right) Z\left(\partial \breve{\sigma}_{n}\right)\left|\operatorname{gCS}_{(d, n)}\right\rangle=X\left(\breve{\sigma}_{n-1}\right) Z\left(\partial * \breve{\sigma}_{n-1}\right)\left|\operatorname{gCS}_{(d, n)}\right\rangle=\left|\operatorname{gCS}_{(d, n)}\right\rangle .
$$

It can be seen as the ground state of the gauged version of the above Hamiltonian,

$$
H_{\text {gauged }}=-\sum X\left(\breve{\sigma}_{n}\right) Z\left(\partial \breve{\sigma}_{n}\right),
$$

with the local gauge constraint $X\left(\breve{\sigma}_{n-1}\right) Z\left(\partial^{*} \breve{\sigma}_{n-1}\right)=1\left(\forall \breve{\sigma}_{n-1}\right)$.

Bulk/boundary symmetries in MBQS

In other words, the boundary global symmetry is promoted to the bulk(+boundary) global symmetry $X\left(\bar{z}_{d-n+1}^{*}\right)\left|\psi_{C}\right\rangle=\left|\psi_{C}\right\rangle$, and it is gauged in the cluster state.

$$
\text { global (} n-1 \text {)-form sym. }
$$

Summary and outlook

Summary/Outlook

- Graph states / cluster states is a class of stabilizer states that can be used for MBQC.
- The 2 d cluster state on a regular lattice is a universal resource.
- Open Question: What is the precise characterization of an MBQC resource state? "Universal phase of quantum matter"?
- The cluster state entangler and measurements combined together offer a shortcut to deconfinement phases.
- The preparation of the toric code state was recently achieved with this method. We expect that more exciting results along this direction will come out in the near future.
- This can be potentially applied to quantum simulations as well.
- Open Question: How about for continuous gauge groups (e.g. $U(1)$) etc.? cf. [Ashkenazi-Zohar (2021)]

Summary/Outlook

- I also explained an Measurement-Based Quantum Simulation scheme. Depending on properties of experimental devices, there can be some advantage over gate-based quantum simulations. E.g. run time.
- So far, this has been formulated for \mathbb{Z}_{N} higher-form gauge theories in arbitrary dimensions, the Fradkin-Shenker model, and Kitaev's Majorana chain model.
- It is also possible to implement the imaginary-time evolution with post selections.
- Open Question: Can we formulate an MBQS for $U(1)$ lattice gauge theories and theories with Dirac/Weyl fermions?
- Open Question: Is the MBQS possible over the family of states within some SPT phase which includes the state $|\mathrm{gCS}\rangle$? (Similar to the notion of "universal phase of quantum matter")
- Thoughts: Relation to the overlap fermion formalism and its anomaly inflow?

Further readings

- R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86, 5188 (2001)
- T.-C. Wei, Measurement-Based Quantum Computation. Oxford Research Encyclopedia of Physics. Retrieved 13 Apr. 2023
- R. Raussendorf, S. Bravyi and J. Harrington, Long-range quantum entanglement in noisy cluster states, Physical Review A 71(6), 062313 (2005)
- A. Miyake, Quantum computation on the edge of a symmetry-protected topological order, Physical Review Letter 105, 040501 (2010)
- B. Yoshida, Topological phases with generalized global symmetries, Phys. Rev. B 93(15), 155131 (2016); M. Levin and Z.-C. Gu, Braiding statistics approach to symmetry-protected topological phases, Phys. Rev. B 86, 115109 (2012)
- S. Roberts, B. Yoshida, A. Kubica and S. D. Bartlett, Symmetry-protected topological order at nonzero temperature, Phys. Rev. A 96(2), 022306 (2017)
- M. van den Nest, W. Dür and H. J. Briegel, Completeness of the Classical 2D Ising Model and Universal Quantum Computation, Phys. Rev. Lett. 100(11), 110501 (2008),
- R. Raussendorf, C. Okay, D.-S. Wang, D. T. Stephen, and H. P. Nautrup, A computationally universal phase of quantum matter, Phys. Rev. Lett. 122, 090501 (2019)
- M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, H.-J. Briegel, Entanglement in Graph States and its Applications, arXiv:0602096

SPT in gCS

- A state has a long-range entanglement iff it is not short-range entangled.
- A state $|\Phi\rangle$ has a short-range entanglement iff there is (finite-depth) local unitary evolution such that $|\Phi\rangle=U\left|\Phi_{\text {prod }}\right\rangle$

O

-

P Product state

SPT in gCS

- A state has a nontrivial SPT order if it is SRE and it is not a trivial SPT.
- A symmetric state $|\Phi\rangle$ has a trivial SPT order with respect to a symmetry G iff there is (finite-depth) symmetric local unitary evolution such that $|\Phi\rangle=U_{\text {sym }}\left|\Phi_{\text {prod }}\right\rangle$

SPT ordered state

Symmetric-SRE

